Archiv der Kategorie: Energie und Umwelt

Verwilderung fördern

LINK-NAME LINK-NAME

Vom Menschen unberührte Natur macht derzeit weniger als ein Viertel der Erdoberfläche aus. Den Forderungen, solche Flächen zur Stabilisierung des Bioplaneten zu vergrößern, steht die wachsende Weltbevölkerung und die auf Wachstum begründete Weltwirtschaft entgegen. Gibt es trotzdem Möglichkeiten, natürliche Funktionsabläufe zu vermehren?

Wildnis und Naturschutz

Die vom Menschen noch kaum veränderten Gebiet der Erdoberfläche machen gegenwärtig weniger als ein Viertel aus. 77% der Landfläche (ohne Antarktika) und 87% der Meere sind bis heute durch menschliche Aktivitäten verändert worden, der größte Teil davon in den letzten 50 Jahren (Watson, Allen u.a. 2018). Dies wird von vielen Ökologen als ein großes Problem angesehen, denn vom Menschen bisher kaum beeinflussten Wildnis-Gebiete gelten als wichtigster Puffer gegen den Verlust der biologischen Vielfalt und die Klimaveränderungen. Wildnisgebiete regulieren Wasserkreisläufe und Klimazyklen und schützen damit vor extremen Wetterereignissen. Außerdem stellen sie wichtige Referenzflächen für die Regeneration und Renaturierung degradierter Landflächen und Meeresgebiete dar. Die Degradation und Fragmentaktion naturnaher Restflächen verstärken die nachteiligen Auswirkungen der Klimaerwärmung auf die Biodiversität (Mantyka-Pringle u. a. 2012).

Den Erhalt von Wildnis ist deshalb ein wichtiges Naturschutzziel.

Aber was ist Wildnis? Ist es im Sinne Aldo Leopolds von Menschen unberührte Natur? Oder sind mit domestizierten Rindern und Pferden beweidete „halboffene Weidelandschaften“ ebenso Wildnis, wie dies Jan Haft in seinem Buch „Wildnis“ darstellt? Welche Rolle spielt Wildnis für die Biodiversität, für den Klimaschutz und für den Erhalt natürlicher Ressourcen? Haben Aufforstungsprogramme etwas mit Wildnis zu tun? Inwiefern ist der Naturschutz mit Wildnis-Vorstellungen verknüpft?

Viele Fragen. Ein Versuch, sie zu beantworten, lässt schnell erkennen, dass es recht unterschiedliche menschliche Vorstellungen von „wilder Natur“ und den Beziehungen der Menschen zu solcher Wildnis gibt.

Europäische Wildnis?

Die in Mitteleuropa seit der letzten Kaltzeit in etwa 12 000 Jahren – also einer erdgeschichtlich sehr kurzen Zeitspanne – entstandenen Landschaften waren von Anfang an vom Menschen beeinflusst. Die menschliche Nutzung hat ein kleinräumiges Mosaik von Lebensräumen geschaffen und zu einer Artenvielfalt geführt, die sich vermutlich ohne den Menschen und seine Nutztiere nicht oder zumindest nicht so schnell entwickelt hätte.

Eine kleinräumig strukturierte Kulturlandschaft hat sich in Mitteleuropa bis heute in einigen Gebieten erhalten (Foto W. Probst 14.9.2012)

Ein flächendeckender Urwald, wie er über die Jahrhunderte heute vermutlich ohne menschlichen Einfluss in Mitteleuropa entstehen würde, hätte sicher eine geringere Artenvielfalt aufzuweisen als die ursprüngliche, vorindustrielle Kulturlandschaft. Der Biologe und Naturfilmer Jan Haft belegt dies in seinem Buch „Wildnis“ mit gut recherchierten Zahlen und Aussagen von Experten (Haft 2023). Es ist deshalb verständlich, dass Naturschutz in Mitteleuropa in vielen Fällen mit Managementmaßnahmen verbunden ist, bei denen es darum geht, traditionelle Landbewirtschaftungsmaßnahmen nachzuahmen. Schilfbestände in Feuchtgebieten werden abgemäht und das Mähgut gut wird entfernt um einen Zustand magerer Feuchtwiesen zu erreichen, der alten Streuwiesen entspricht. Heiden und Moore werden maschinell oder von Hand von Gehölzen befreit (entkusselt), um einen Zustand herzustellen, der einer extensiven Beweidung entspricht. Feldhecken, die früher auch der Nutzholzgewinnung dienten, werden als Naturschutzmaßnahme weiterhin regelmäßig „auf den Stock gesetzt“, um das Durchwachsen zu Baumreihen zu verhindern und den für Kleinsäuger, Vögel, Reptilien und viele Wirbellosen wertvollen Heckencharakter zu erhalten. Alle diese Maßnahmen zielen auf den Erhalt von Landschaften ab, die man nicht als „unberührte Natur“ bezeichnen kann.

In den zwischeneiszeitlichen Warmzeiten allerdings war die Biodiversität ebenfalls deutlich höher. Ursache waren vermutlich die zahlreichen großen Herbivoren, deren Weidetätigkeit die Bildung geschlossener Urwälder verhinderte. Vielmehr herrschten offene, savannenähnliche Landschaften , wie sie heute zum Beispiel noch in Afrika zu finden sind. Dass es solche großen Pflanzenfresser seit dem Ende der letzten Kaltzeit in Europa nicht mehr gibt, ist vermutlich auf die Tätigkeit menschlicher Jäger zurückzuführen ( Sandom et al. 2014). Streng genommen könnte man deshalb diese voreiszeitliche Landschaft als die eigentliche mitteleuropäische Wildnis ansehen.

Nordamerikanische Wilderness

In Nordamerika ist der Naturschutz deutlich stärker mit dem Wildnisbegriff im Sinne von unberührter Natur verbunden als in Europa. Der Naturalist und Dichter Henry David Thoureau forderte schon 1862, dass jede amerikanische Stadt zur Bildung und Erholung ihrer Bevölkerung 200-400 ha Wildnis so bewahren sollte, dass darin nicht einmal die Spur eines geschnittenen Stockes zu erkennen wäre (nach Trommer 2023). Auch für den großen amerikanischen Naturschützer John Muir war die wilde, von Menschen unberührte Natur der zu schützende Idealzustand. Ebenso setzte sich der Wildtierbiologe Aldo Leopold (1887-1948) für die Bewahrung von Wildnis als einem von Menschen weitestgehend unbeeinflusstem Naturraum ein. Seine Schriften hatten großen Einfluss auf den 1964 beschlossenen Wilderness Act, mit dem ein System von vollständig geschützten Wilderness Areas geschaffen wurde (Henderson o.J.).

Diese unterschiedlichen Vorstellungen von Naturschutz in Nordamerika und Europa hängen sicherlich auch damit zusammen, dass die Landschaftsveränderungen in Nordamerika im 18. und vor allem im 19. Jahrhundert in atemberaubender Geschwindigkeit verliefen und deshalb im Laufe eines Menschenlebens sehr gut zu beobachten waren. Die europäischen Siedler bewirkten eine sehr rasche und drastische Veränderung und verhinderten von vorneherein die Entwicklung einer europäischen Verhältnissen vergleichbaren kleinräumig strukturierten Kulturlandschaft.

Agrarlandschaft in Illinois (Foto W.Probst 1989)

Außerdem war der Ausgangszustand nach der Eiszeit in Nordamerika biodiverser als in Europa. In Nordamerika konnten sich die Biodiversität nach der letzten Eiszeit  schneller regenerieren als in Europa, da die Biozönosen während der Kaltzeiten wegen der vorwiegend von Norden nach Süden streichenden Gebirge nicht so stark dezimiert wurden.  In Mitteleuropas war eine Rückzugsmöglichkeit nach Süden durch die Alpen weitgehend versperrt.

Allerdings sind auch in Nordamerika viele der vor den Kaltzeiten oder in Zwischenwarmzeiten noch existenten großen Pflanzenfesser einschließlich ihrer Prädatoren verschwunden. Es ist naheliegend, zu vermuten, dass auch hier menschlicher Einfluss, die Jagd, für das Aussterben entscheidend war. Ähnliche Entwicklungen kann man auch für Australien und Teile Asiens nachweisen. Lediglich in Afrika haben bis heute eine Vielzahl großer Herbivoren und Carnivoren überlebt. Dies wird damit in Verbindung gebracht, dass sich in Afrika Menschen und Großsäuger über lange Zeiträume parallel entwickelt haben.

Welche Wildnis wollen wir?

Aus diesen Überlegungen wird deutlich, dass nicht so ganz eindeutig ist, was jeweils unter „Wildnis“ , also einem ursprünglichen Naturzustand, gemeint ist und welche günstigen Wirkungen auf eine nachhaltige Entwicklung des Bioplaneten Erde sich daraus ergeben. Geht es um einen Zustand ohne jeglichen menschlichen Einfluss, also um Ökosysteme ohne Homo sapiens oder gehören auch sogenannte Naturvölker dazu? Welche Rolle spielen reich strukturierte Kulturlandschaften, wie sie bis zu Beginn der Industrialisierung in Europa vorherrschend waren? Wie sind die Veränderungen – man kann auch sagen Ausrottungen – zu bewerten, die schon durch Jäger und Sammler bei der Besiedelung Australiens  und Amerikas bewirkt wurden? Wo zieht man die Grenzen? Ist es wirklich notwendig, völlig unberührte (menschenfreie) Natur zu erhalten, oder können menschliche Aktivitäten teilweise dazu führen, dass Funktionen im Naturgeschehen wieder ablaufen, die vormenschlichen Bedingungen entsprechen? Geht es also mehr um „wilde“ Funktionsabläufe als den Erhalt eines menschenfreien Zustandes?

Wilde Weiden

Heckrinder-Bulle im Leimbach-Hepbacher Ried bei Markdorf, Baden-Württemberg (Foto Probst 2011)

Jan Haft zielt in seinem Buch „Wildnis“ genau auf dieses Funktionsverständnis von Wildnis ab, das im Naturschutz auch als „Prozessschutz“ bezeichnet wird. Dabei geht es ihm vor allem um die Ökosysteme mit großen Pflanzenfressern, die in vielen Gebieten der Erde vor dem Erscheinen des Menschen große Räume einnahmen. Diese vorzeitliche Wildnis könnte funktional wiederhergestellt werden durch domestiziert Weidetiere, deren Populationen nicht durch Carnivoren sondern durch den Menschen reguliert werden. Die mittlerweile an vielen Orten etablierten „halboffenen Weidelandschaften“ sind ein gutes Beispiel dafür, dass solche wilde Weiden der Biodiversität wirklich sehr förderlich sind und dass in solchen Gebieten viele bedrohte Arten sich wieder ausbreiten und regenerieren konnten. Zwei sehr gut dokumentiertes Beispieleaus meiner früheren Heimat sind die auf einem ehemaligen Truppenübungsplatz der Bundeswehr entstandene Weidelandschaft „Stiftungsland Schäferhaus“ bei Flensburg und das Stiftungsland Winderatter See – Kielstau (Janßen 2011-2020)

Das Prinzip dieser Art von Verwilderung lässt sich auf andere Bereiche ausweiten. Einige Beispiele:

Aufforstung

Bäume pflanzen und durch Trockenheit und Schädlingsbefall – vor allem Windbruch und Borkenkäfer –  geschädigte oder zusammengebrochenen Wälder durch Aufforstung zu regenerieren gilt nicht nur als eine wichtige Maßnahme des Klimaschutzes sondern auch des Naturschutzes und der Förderung der Biodiversität. Dem widerspricht zum Beispiel der Förster und Erfolgsautor Peter Wohlleben: „Wald kommt von ganz alleine zurück, das macht er seit 300 Millionen Jahren.“ Global gäbe es kein Beispiel dafür, dass gepflanzter Wald besser funktioniert, als ein Wald, der von selbst zurück wächst. Besonders widerspricht Wohlleben der Annahme, Bäumepflanzen sei eine unumstrittene Klimaschutzmaßnahme. Eine frisch gepflanzte Aufforstung stoße in den ersten Jahren bis Jahrzehnten mehr CO2 aus, als die neu gepflanzten Bäume aufnehmen könnten (Wohlleben in“Hart aber fair“ , 01.11.21).

Erfahrungen im Nationalpark Bayerischer Wald geben Wohllebens Auffassung recht. Nachdem in den 1990 er Jahren durch Borkenkäferbefall rund 60.000 ha Wald zugrunde gegangen waren, hielt die Nationalparkverwaltung trotz großer Proteste der Öffentlichkeit an ihrer Nichteingriffsstrategie fest. Die sich hervorragend regenerierenden Bergwaldflächen sind mittlerweile ein international bekanntes Beispiel für natürliche Waldregeneration (Bibelriether 2017).

Ackerbau

Die hohe Biodiversität einer kleinräumig strukturierten Kulturlandschaft, wie sie in früheren Jahrhunderten für Mitteleuropa typisch war, ist unbestritten. Viele hiesige Naturschutzmaßnahmen zielen deshalb darauf ab, alte bäuerliche Bewirtschaftungsformen zu simulieren. Dies geht aber nur auf verhältnismäßig kleinen, abgeschlossenen Naturschutzflächen. Großflächig dominieren weiterhin große, unstrukturierte Ackerflächen, da nur solche mit Großmaschinen rationell bearbeitet werden können. Wäre es nicht denkbar, dass eine zunehmende Digitalisierung der Landwirtschaft auch eine rationelle maschinelle Bearbeitung kleinräumig strukturierte Anbauflächen ermöglichen würde? Statt dinosaurierartiger Riesenmaschinen könnten kleine Agrarroboter Bearbeitung und Ernte übernehmen, die von Satelliten oder Drohnen gesteuert ganz gezielt eingesetzt werden könnten. Sie würden sich an einem verhältnismäßig engmaschigen Netz von Feldhecken und Feldgehölzen, Randstreifen und Saumbiotopen nicht stören. So könnte eine kostengünstige Produktion ermöglicht werden, ohne natürliche Funktionsabläufe vollkommen zu unterbinden.

Auch die arbeitsintensiven Methoden der Permamakulturen und der Agroforestry, die versuchen, natürliche Prozesse nicht zu unterdrücken sondern auszunutzen, könnten durch KI-Einsatz rentabler werden.

Landwirtschaft, die natürliche Funktionsabläufe zulässt (Grafik W. Probst)

KI in der Landwirtschaft

Der nächste Schritt in der technologischen Entwicklung intelligenter landwirtschaftlicher Maschinen könnte eine Art Schweizer Armeemesser sein: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden sondern auch mit angepassten Düngemitteln, Insektiziden und Fungiziden und gezielter Bewässerung, alles in einem Arbeitsgang und jeweils nur in der benötigten Menge. Die Folgen einer solchen. Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Es könnte schließlich auch zu einem Ende der Monokulturen führen, einem Ende von Kornfeldern oder Sojafeldern soweit das Auge reicht, die heute der Normalfall sind. Monokulturen laugen Böden aus und sind riskant, da solche nur von einer Pflanzenart bewachsene Felder für Schädlingsbefall und andere Katastrophen besonders anfällig sind.“ (Übersetzt aus Little, A. (2019): The fate of food. What we’ll eat in a bigger,hotter,smarter World. London: Oneworld Publications, p.106)

Paludikultur

Bis vor 200 Jahren waren Torfmoore die letzten unberührten Naturlandschaften Mitteleuropas. Durch Entwässerung und Bodenbearbeitung, Torfstich zur Brennmaterialgewinnung und später für Blumenerde und Gärtnereibedarf führten zum weitgehenden Verschwinden ursprünglicher Moore mit aktiver Torfbildung. Im Zuge der Klimaerhitzung hat man festgestellt, dass die Torfbildung unter Mooren eine sehr effektive Form der Kohlenstoffspeicherung darstellt. Deshalb werden seit einiger Zeit große Anstrengungen unternommen, um aktive Moore zu regenerieren. Dies muss aber nicht unbedingt zur Herstellung des ursprünglichen Zustandes führen. Eine Alternative sind die sogenannten Paludikulturen, bei denen auf wieder vernässten Torfböden nutzbare Pflanzenproduktion betrieben wird. Geerntet werden können nicht nur Schilf und Sauergräser sondern auch Torfmoose, aus denen ein für Gärtnereizwecke besonders wertvolles, dem Hochmoortorf entsprechendes Grundsubstrat gewonnen werden kann. Die Kohlenstoff-speichernden Torfschichten bleiben erhalten. Auch weitere ökologische Funktionen wie Regulierung des Wasserhaushaltes und Erhalt von Lebensräumen für moortypische Tiere und Pflanzen blieben – zumindest teilweise – erhalten (Tanneberger, Schroeder 2023)

Migration

Arten, die sich in einem Gebiet ausgebreitet und etabliert haben, in dem sie zuvor nicht heimisch waren, nennt man Neobiota (auch Neobionten, Sing. der Neobiont). Enger gefasst versteht man darunter nur solche Arten, für deren Einbürgerung indirekt oder direkt menschliche Aktivitäten verantwortlich waren. Arten, die sich ohne menschlichen Einfluss ausgebreitet haben, werden dann als Neueinheimische (Neonative) bezeichnet. Besonders wichtig für Neobiota im engeren Sinne ist der weltweite Güterverkehr.

Nach einer Recherche von Kleunen et al. 2015 wurden bs dahin weltweit 13.168 Pflanzenarten durch menschliche Aktivitäten in neuen Gebieten eingebürgert. Besonders neobiontenreich ist Nordamerika, die größte Anzahl der weltweit neu eingebürgerten Arten stammt aus Europa. Beides hängt vermutlich direkt mit der Kolonisation zusammen, die von Europa ausging.

Vom Naturschutz wird diese menschenbedingte Migration zumeist als großes Problem angesehen, da neu eingewanderte Arten etablierte, heimische Arten verdrängen und Ökosysteme verändern können. Der Naturschutz versucht deshalb, diese Migration zu verhindern und die Migranten wenn möglich wieder aus den neu eroberten Gebieten zu verdrängen. Tatsächlich haben Neobiota teilweise zu drastischen Veränderungen der ursprünglichen Ökosysteme beigetragen. Dies gilt besonders für pazifische Inseln, die von europäischen Kolonisatoren nicht nur mit landwirtschaftlichen Nutzpflanzen und Nutztieren (Schweine, Ziegen) sondern auch mit Ratten und europäischen Wildpflanzen von Äckern und Weiden „geimpft“ wurden. Die sehr speziellen Ökosysteme hatten solchen im wahrsten Sinne des Wortes invasiven Arten nichts oder wenig entgegenzusetzen und viele auf den Inseln endemisch Arten wurden ausgerottet.

Andererseits ist Migration ein sehr natürlicher Vorgang, der für die Geschichte des Lebens auf der Erde eine entscheidende Rolle gespielt hat. Mancuso (2021) bezeichnet Migration nicht ganz zu Unrecht sogar als „Essenz des Lebens“. Allen Lebewesen, so Mancuso, sei ein „Wandertrieb“ eigen, das Bestreben, sich möglichst effektiv auszubreiten, das Verbreitungsareal zu vergrößern. Durch solche Wanderungen bedingte Veränderungen wären für die Entwicklung des Lebens auf unserem Planeten – nicht zuletzt auch für die Evolution des Menschen – von großer Bedeutung. Vom Menschen geförderte oder verursachte Migration ist nicht etwas grundsätzlich anderes als natürliche Migration, allerdings kann vom Menschen geförderte Ausbreitung natürliche Ausbreitungsschranken schneller überwinden und auch große Entfernungen können durch moderne Verkehrsmittel schnell überbrückt werden.

Um den Artenbestand von Inseln zu erklären, haben  MacArthur und Edward O. Wilson 1967 die mittlerweile breit akzeptierte Gleichgewichtstheorie der Inselbesiedelung entwickelt. Danach stellt sich – qualitativ leicht zu beschreiben – auf jeder Insel ein Gleichgewicht zwischen Einwanderungsrate und Aussterberate der Arten ein. Je mehr Arten auf einer Insel vorhanden sind, desto geringer ist die Einwanderungsrate. Entweder, da keine Arten zur Einwanderung mehr zur Verfügung stehen, oder, da es keinen Platz mehr für die neu zugekommenen Arten gibt, da also keine „Nischenbildung“ mehr für sie möglich ist. Umgekehrt ist die Aussterberate umso größer, je mehr Arten auf der Insel sind. Steht  genügend Zeit zur Verfügung, stellt sich ein Gleichgewicht ein, eine bestimmte Artenanzahl. Die Zusammensetzung der Arten, das Artenspektrum, kann sich oder muss sich allerdings weiter ändern, da ja immer Arten aussterben und Arten einwandern, jeweils in einer Rate, die dem Gleichgewicht entspricht. Ohne Migration würde die Artenanzahl auf Inseln danach kontinuierlich abnehmen. Dies gilt aber natürlich auch für andere mehr oder weniger abgeschlossene Gebiete und vermutlich sogar für ganze Kontinente.

Die meisten Neobiota haben sich gut in die Ökosysteme integriert, ohne dass nachteilige ökologische Auswirkungen erkennbar wären. Eine gezielte Bekämpfung ist deshalb in den meisten Fällen nicht notwendig und – wenn sich die Arten schon weit verbreitet haben – auch wenig erfolgversprechend. Die Ausbreitung und Etablierung von Neobiota kann bei sich veränderndem Klima sogar eine Stabilisierung von Ökosystemen bedeuten. Auch das Bundesamt für Naturschutz empfiehlt deshalb eine weitgehende Akzeptanz der Neubürger und eine Bekämpfung nur in begründeten Einzelfällen.

Verkehr

Die Hauptprobleme, die sich durch privaten und öffentlichen Verkehr ergeben, sind die Zerschneidung der Landschaft und die Produktion schädlicher Abgase. Das zweitgenannte Problem versucht man durch „grüne Energie“ und Abschaffung von Verbrennungsmotoren zu beheben. Das erste Problem ist für die natürliche Funktionsabläufe in einer Landschaft besonders gravierend. Es könnte zum Teil dadurch behoben werden, dass die Zerschneidungseffekte von Verkehrswegen durch grüne Brücken vermindert werden, noch effektiver durch großzügigen Brücken- und Tunnelbau. Dabei spielt die fachgerechte Ausführung und Unterhaltung der Grünverbindungen eine entscheidende Rolle (Peters-Ostenberg, Henneberg 2023).

Auch durch Alleen kann der schädliche Zerschneidungseffekt von Verkehrswegen gemindert werden. Außer ihrer Bedeutung als vernetzendes Element stellen sie selbst vielseitige Lebensräume dar.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologischer“ werden. Damit ist gemeint, dass Funktionsabläufe in dem Ökosystem Stadt stärker den Funktionsabläufen in einem natürlichen Ökosystem entsprechen sollen. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Lass u. a. 2022). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur Grundfläche hergestellt werden. Beim Bewuchs selbst könnte dem Prinzip „Wachsen lassen“ mehr Raum gegeben werden.

Vernetzung von begrünten Dächern (Grafik W.Probst)

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Außerdem sind die bisher architektonisch verwirklichten Grünfassaden gärtnerisch aufwändige Konstruktion, die eine hohe Wartung benötigen. Ziel müsste es sein, möglichst wartungsarme sich selbsterhaltende Systeme zu erzeugen.

Eine Möglichkeit für eine schnelle flächenhafte Begrünung wären Module, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Fassadenbegrünung mit vorgefertigten Modulen (Grafik W. Probst)

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Hochhäuser als Gewächshäuser, „Vertical Farming“

Diese platzsparende Form der Landwirtschaft setzt einen preisgünstigen Zugang zu alternativen Energien voraus, wird aber heute schon als eine wichtige, nachhaltige und zukunftsfähige Ergänzung zur Flächen gebundenen Landwirtschaft gesehen:

Die Fluggesellschaft Emirates Airline plant deshalb die größte Vertical Farm der Welt neben dem Flughafen von Dubai. Singapur plant schwimmende Vertical Farms.

Wenn es in der Zukunft gelingt, den Kraftfahrzeugverkehr weitgehend aus den Stadtzentren herauszuhalten, werden dort auch keine Parkhäuser mehr benötigt und diese könnten zu „Plantscrapern“ werden (Despommier 2011).

Ritzen und Fugen

Der portugiesische Stadtplaner und Architekt Ángel Panero Pardo stellte auf dem großen Platz vor der Wallfahrtskathedrale von Santiago de Compostela während der Corona Pandemie fest, dass sich dieser Platz nach dem Ausbleiben der Pilger in ein Biotop für Wildkräuter verwandelt hatte. Die Fugen zwischen den Pflastersteinen waren grün. Der Stadtplaner überlegte, dass dieser zusätzliche Pflanzenwuchs sich eventuell positiv auf das Stadtklima auswirken könnte. Die Botaniker der Universität von Santiago de Compostela wurde mit einer Untersuchung beauftragt und sie stellten mit einer Wärmebildkamera fest, dass die bewachsenen Ritzen eine bis zu 28 °C niedrigere Oberflächen-temperatur aus aufwiesen als die Steine (Prinz 2023).

Dieses Ergebnis fand in den Medien einen breiten Widerhall, obwohl es eigentlich nicht so verwunderlich ist. Wenn man Fugen und Ritzen in Pflastern und Mauern nicht länger von jedem Bewuchs frei hält, sondern Bewuchs zulässt, hat dies einen messbar positiven Einfluss auf das Stadtklima.

Gehsteigkante mit Acker-Winde, Oberteuringen, 27.7.2016 (Foto W. Probst)

Gärten

Ein besonders großes Potenzial stellen Privatgärten dar, die vor allem in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf, was gepflanzt wurde. Der Garten darf nicht „verwildern“. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Dabei gibt es viele Möglichkeiten, natürliche Funktionsabläufe im Garten zuzulassen oder sogar zu fördern und so eine „Verwilderung“ zu ermöglichen, die durchaus ästhetischen Ansprüchen gerecht werden kann:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Vogelfutter, Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Verwilderung zulassen                               

Ein Garten, in dem verhältnismäßig wenig pflegerische Eingriffe vorgenommen werden, „verwildert“. Diese Art von Verwilderung ergibt sich aus natürlichen Funktionsabläufe, die nicht durch menschliche Eingriffe unterbrochen werden. Wenn man sich bei allen Eingriffen und Pflegemaßnahmen – Manipulationen der Natur – überlegt,  welche Ziele mit Ihnen verfolgt werden sollen und ob diese Ziele notwendig und sinnvoll sind, wird man schnell erkennen, dass man auf viele Eingriffe verzichten könnte. Ein solcher Verzicht ist ein Schritt in Richtung Wildnis, wenn man unter Wildnis Vewilderung, das Zulassen natürlicher Prozesse, versteht.

Verwilderter Apfelgarten bei Flensburg (Foto U.Niss)

Quellen

Bibelriether, H. (2017): Natur Natur sein lassen. Die Entstehung des ersten Nationalparks Deutschlands: Der Nationalpark Bayerischer Wald. Freyung: Lichtland

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Bundesamt für Naturschutz: Neobiota – Gebietsfremde und  invasive Arten in Deutschland. https://neobiota.bfn.de/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Fløjgaard, C. et al. (2021): Exploring a natural baseline for large-herbivore biomass in ecological restoration

Haft, J. (2023): Wildnis: Unser Traum von unberührter Natur (German Edition) (S.141). Penguin Verlag. Kindle-Version.

Hendersen, D. (o. J.): American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

http://eh-da-flaechen.de/

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

Janßen,W. (2011-2020): Jahresberichte des Fördervereins für Natur und Umwelt Winderatter See – Kielstau. https://winderattersee-kielstau.de/?page_id=236

Kleunen, M. van et al. (2015): Global exchange and accumulation of non nativ plants. Nature 525, pp. 100–103

Lass, W., Reusswig, F, Walther, C.; Niebuhr, D.; Schürheck, T. Grewe, H. A. (2022): Hitzeaktionsplan für das Land Brandenburg (HAP BB). Gutachten, 20.9.22, Potsdam.

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

MacArthur, R. H., Wilson, E. O (1967): The Theory of Island Biogeography. Princeton: University Press

Mancuso, S. (2021): Die Pflanzen und ihre Rechte. Eine Charta zur Erhaltung unserer Natur. Stuttgart: Klett-Cotta

Mrasek, V. (2019): Kann Aufforstung das Klima retten? Deutschlandfunk 5.11.2019 https://www.deutschlandfunk.de/waldwunschdenken-kann-aufforstung-das-klima-retten-100.html

Nickel et al. (2016): Außerordentliche Erfolge des zoologischen Artenschutzes durch extensive Ganzjahresbeweidung mit Rindern und Pferden: Ergebnisse zweier Pilotstudien an Zikaden in Thüringen, mit weiteren Ergebnissen zu Vögeln, Reptilien und Amphibien. Landschaftspflege und Naturschutz in Thüringen, 53, S. 5 – 20

Peters-Ostenberg, E., Henneberg, M. (2023): Zerschneidug – Entschneidung – Brücken bauen. In: : Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 87-96

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Prinz, U. (2023): Mit Superkräutern gegen den Hitzestress.  https://www.spektrum.de/news/bewachsene-fugen-superunkraeuter-gegen-hitzestress/2142636#

Probst, W. (2020): Der grüne Pelz. https://www.wilfried-probst.de//der-gruene-pelz/

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2017): Wachsen lassen – Naturschutz an Rändern, Säumen und Kanten. https://www.wilfried-probst.de//wachsen-lassen-naturschutz-an-raendern-saeumen-und-kanten/

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Sandom, C. J. et al. (2014): High herbivore density associated with vegetation diversity in interglacial ecosystems. In: Proceedings of the National Academy of Sciences of the United States of America, 111, 11, S. 4162 – 4167

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Tanneberger, F., Schroeder, V. (2023): Das Moor. München: dtv

Trommer, G. (2023): Der wilde Rest. In: Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 195-218

Van Kolfschoten, T. (2000): The Eemian mammal fauna of central Europe. Netherlands Journal of Geosciences 79, 2,3, S. 269 – 281

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

Weinzierl, H. (2007): Einführung zum Fachsymposium „Mehr Wildnis, die Zeit ist reif“. S. 6-8 in: Deutscher Naturschutzring (Hrsg.): Mehr Wildnis, die Zeit ist reif. Fachsymposium. Bonn

Wohlleben, P. (2013): Der Wald –ein Nachruf. München: Ludwig

Moore

LINK-NAME LINK-NAME

Der Schutz und die Wiederherstellung von Mooren gilt schon seit langem als wichtige Naturschutzaufgabe. Dabei ging es zunächst in erster Linie um die schützenswerten Lebensgemeinschaften mit ganz besonderen, in der übrigen Landschaft seltenen oder fehlenden Arten. Erst durch die hohe Aktualität der Klimakrise rückte die Bedeutung der Moore als Kohlenstoffspeicher in den Vordergrund. Aber auch ihre Bedeutung für den Wasserhaushalt und den Stickstoffkreislauf befördert aktuelle Moorschutzmaßnahmen.

Feuchtbiotope

Unter Feuchtbiotopen versteht man Lebensraumtypen, die über einen längeren Zeitraum des Jahres bis zur Landoberfläche mit Wasser gesättigt sind. Weiter gefasst werden auch Seen und Fließgewässer und von Salzwasser bestimmte Lebensräume wie das Wattenmeer mit einbezogen. Obwohl solche Feuchtgebiete nur etwa 6 % der Erdoberfläche einnehmen, erbringen sie rund ein Viertel der Nettoprimärproduktion. Sie haben eine besondere Bedeutung als Grundwasserfilter, für Überschwemmungsschutz, in vielen Fällen als Kohlenstoffsenke und als Rast- und Überwindungsplätze für Wasser- und Watvögel.

Man unterscheidet zum Beispiel Moore, Brüche, Auwälder, Riede und Sümpfe. Für die Einteilung ist wichtig, ob Torfbildung stattfindet oder nicht und wie die Wasserversorgung des Gebietes erfolgt. Auch das Vorhandensein oder Fehlen von Bäumen und anderen Gehölzen spielt für die Unterscheidung eine wichtige Rolle.

Abb. 1 Überblick über die verschiedenen Feuchtbiotope in Mitteleuropa

Moore als Kohlenstoffspeicher

Für die Kohlenstoffspeicherung von besonderer Bedeutung sind Moore. Sie entstehen auf wasserdurchtränkten Böden, in denen wegen des Sauerstoffmangels die anfallenden Pflanzenreste nur sehr langsam zersetzt werden. Da die Produktion von organischer Substanz rascher erfolgt als ihr Abbau, kommt es zur Ablagerung von Torf. Dabei ist „Moor“ ein geografischer bzw. botanischer, „Torf“ ein mineralogisch-petrografischer Begriff. Bodenkundlich ist Torf definiert durch seinen hohen Glühverlust (bei 550 °C):Torf: 100-75 %, anmooriger Boden: 74-15 %, Mineralboden: unter 15 %.

Wenn Torfschichten eine Mächtigkeit von über 30 cm haben werden diese Gebiete als Moore bezeichnet, unabhängig davon, ob dort noch eine neue Torfbildung stattfindet oder nicht. Bei einer geringeren Torfschicht oder einem geringeren Torfanteil im Boden spricht man von „Anmoor“. Der Überbegriff für beide ist „organische Böden“. Im Gegensatz dazu haben mineralische Böden einen geringeren organischen (Humus-)Anteil und einen höheren Anteil aus verwittertem Gestein.

Beim Abbau der organischen Substanz unterscheidet man:

Verwesung durch aerobe Mikroorganismen: Völliger Abbau zu Kohlenstoffdioxid und Wasser sowie anorganischen Mineralstoffen (Nitrate, Phosphate….).

Vermoderung: Unvollkommene Verwesung bei unzureichendem Sauerstoffzutritt.

Fäulnis: Vollzieht sich unter Sauerstoffabschluss; es bilden sich durch anaerobe Bakterien vor allem Methan und Schwefelwasserstoff, aber auch Ammoniak und Lachgas; Bildung von Faulschlamm, Mudde (Seesediment mit relativ hohem organischem Anteil).

Vertorfung beginnt bei behindertem Sauerstoffzutritt mit Vermoderung, später folgt unter Luftabschluss eine sehr langsame Fäulnis. Schnell zersetzen sich die Zellinhalte aus Proteinen, Zuckern und Stärke. Langsamer werden die Stoffe der Zellwände abgebaut, zuerst Pektine und Hemizellulosen, dann die Zellulose zuletzt der Holzstoff Lignin. Sehr schwer zersetzen sich außerdem Fette, Harze,Wachse, Kutin und Sporopollenin. Pollenkörner und Sporen bleiben in Torf deshalb sehr gut erhalten. Durch ihre Funde in gut datierbaren Torfschichten kann man deshalb auf die Vegetation früherer Zeiten schließen (Pollendiagramme).

Abb. 2 Torfbildung

Für die Eigenschaften des Torfes (Struktur, Anteil an Mineralstoffen, Huminstoffen, pH-Wert, Wassergehalt) ist die Pflanzengemeinschaft wichtig, aus deren Ablagerungen er entstanden ist. Immer handelt es sich dabei um Pflanzengemeinschaften feuchter Standorte.

Abb. 3 Torfbildung von unterschiedlichen Pflazengemeinschaften (verändert nach Overbeck 1975)

Die Anhäufung von organischem Material in aktiven Mooren ist standortabhängig. Aus Messungen ergibt sich ein Torfwachstum von 1± 0,8mm im Jahr. Die großen Unterschiede kommen durch die unterschiedliche torfbildende Vegetation und die klimatischen Bedingungen zustande.

In jedem Fall wird der Atmosphäre solange Kohlenstoff entzogen, solange mehr Torf gebildet als abgebaut wird. Moore gelten daher als Kohlenstoffsenken. Für die langfristige Kohlenstoffakkumulation unterschiedlicher Torfarten hat man Werte zwischen 0,15 und 1,3  t C ha-1 a-1 ermittelt (Tepel 2007/08). Das unterscheidet Moore von Wäldern, deren Senkenwirkung mit dem Erreichen des Klimaxstadiums beendet ist, da sich dann Einlagerung und Abgabe die Waage halten. Aber auch  trockengelegte, kultivierte oder anderweitig genutzte Moore können von Kohlenstoffsenken zu Kohlenstoffquellen werden, da ihr Kohlenstoffspeicher durch aerobe oder anaerobe Zersetzungsvorgänge abgebaut wird. Bei aerobem Abbau wird Kohlenstoffdioxid, bei anaerobem Methan freigesetzt. In ausgetrockneten Mooren wird dies in den oberen Schichten jedoch schnell zu CO2 oxidiert (Abb. 4). Durch Vernässung kann die Torfbildung wieder in Gang gebracht und damit die Wirkung als Kohlenstoffsenke wiederhergestellt werden.

Abb.4  Moore als Kohlenstoffsenken und -quellen

Etwa 3 % der Landfläche der Erde sind von Mooren oder Anmooren bedeckt. Das entspricht einer Fläche von 4 Millionen km². Die größten Moorflächen finden sich in Kanada, Alaska, Nordeuropa und Sibirien, aber auch in tropischen Waldgebieten von Südostasien, im Amazonasbecken und im Kongo-Regenwald wurden große Torfflächen nachgewiesen (Page/Rieley/Wüst 2006, Dargie et al. 2017). In Mitteleuropa sind ursprünglich etwa 5 % der Landfläche von Mooren bedeckt. Sie sind alle nach der Eiszeit beginnend vor etwa 15.000 Jahren entstanden und zwar in den von Gletschern überformten Gebieten Norddeutschlands und am Alpenrand. Einige Moore gibt es auch in den Mittelgebirgsräumen, beispielsweise im Hohen Venn und im Schwarzwald.

Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

 Fläche in106 km2Anteil an der Landfläche in %
gesamte Landfläche149 
landwirtschaftlich genutzte Fläche5134
Wälder3926
Gletscher, Wüsten u.Ä.4329
Busch128
Siedlungen1,51
Seen, Flüsse1,51
  in den genannten Flächen enthalten:  
Moore und Anmoore (organische Böden).ca.43
Tab.1 Aufteilung der Landfläche auf der Erde (2019) (nach Jäger 2020)

Global ist die Menge an organisch gebundenen Kohlenstoff in den Böden ungefähr dreimal so groß wie die Kohlenstoffmenge in allen Lebewesen zusammen und doppelt so groß wie der Kohlenstoffgehalt der Atmosphäre.

SystemKohlenstoffvorrat (in Gt)
Böden insgesamt1500
Moorbödenca.500
Landpflanzen560
Atmosphäre750
Ozeane38.000
Marines Plankton3
Tab. 2 Kohlenstoffvorräte in Gigatonnen für unterschiedliche Systemkompartimente des Kohlenstoffkreislaufs (nach Trepel 2007/08). Dank des mittlerweile (2022) auf 416 Vol ppm angestiegenen CO2-Gehalts der Atmosphär beträgt der Kohlenstoffvorrat derzeit ca. 850 Gt.

Nach einer Datenauswertung von Yu et al. von 2010 zeigt sich, dass die Kohlenstoffspeicherung nach der letzten Kaltzeit in den Mooren der Nordhemisphäre am höchsten war, wobei höchste Akkumulation im frühen Holozän lag. Deutlich weniger Kohlenstoff wurde in tropischen Moorgebieten vor allem vor 4000-8000 Jahren akkumuliert, während die Moore der Südhemisphäre – vor allem in Patagonien gelegen – vor allem während einer  Wärmeperiode vor 15-20.000 Jahren Torfschichten aufgebaut haben

RegionFläche (km2)C-Speicher(Gt)durchschnittliche C-Speicherung
(gCm-2a-1) seit der letzten Vereisung
Nordhemisphäre4 000 000547 (473-621)18,6
Tropen368 00050(44-55).12,8
Südhemisphäre45 00015 (13-18)22,0
Tab. 3 Überblick über die Moorflächen der Erde und ihre Kohlenstoffspeicherung (nach Yu et al. 2010)
 Fläche in haGespeicherte Kohlenstoff in G t
Organische Böden in der EU31 000 00017
Organische Böden in Deutschland1 823 922mindestens 1,3
Tab. 4 Organische Böden in Europa und ihre Kohlenstoffspeicherung (nach Jäger 2020)

Für die Klimaerwärmung spielt vor allem die Vernichtung von Kohlenstoffvorräten in den Moorböden weltweit eine wichtige Rolle. Torfbrände in Südostasien haben zum Beispiel in den letzten Jahrzehnten den stärksten Anstieg der CO2-Emissionen in der Atmosphäre bewirkt (Page et al 2002, Rieley et al. 2006). In Deutschland spielt vor allem die landwirtschaftliche Nutzung von Moorböden eine entscheidende Rolle für die Freisetzung von Kohlenstoffdioxid.

Bereiche in Mt CO2– Äquivalente pro Jahr
aus allen Bereichen in Deutschlandca. 900
aus Landwirtschaft (ohne die Herstellung synthetischer Düngemittel)103,5
aus organischen Böden, die als Acker und Grünland genutzt werden38
Tab. 5 Treibhausgasemissionen in Deutschland (nach Jäger 2020)

Moortypen und ihre Entstehung

Je nach Umweltbedingungen entstehen unterschiedliche Moortypen. Sie unterscheiden sich vor allem darin, woher das Wasser kommt, welche Salze im Wasser gelöst sind und welche Pflanzenarten deshalb dort gedeihen können. So werden die regenwasserabhängigen Hochmoore oder Regenmoore den Niedermooren gegenübergestellt, die ihren Wasservorrat aus dem Grundwasser oder aus Oberflächengewässern erhalten. Regenwasser ist sehr mineralstoffarm. Der Mineralstoffgehalt der Gewässer, die Niedermoore speisen, kann sehr unterschiedlich sein. Nach der Herkunft des Wassers kann man sehr verschiedene Niedermoortypen unterscheiden.

Niedermoore (Wasserversorgung durch Oberflächenabfluss und Grundwasser)

  • Verlandungsmoore
  • Versumpfungsmoore
  • Überrieselungsmoore, Durchströmungsmoore
  • Quellmoore
  • Flussüberflutungsmoore

Niedermoore können je nach Nährmineralien und Kalkgehalt zahlreiche seltene Pflanzenarten beherbergen, zum Beispiel Seggen-Arten und Orchideen.

Hochmoore (Wasserversorgung nur durch die Niederschläge)

  • allmählich aus mineralstoffarmem Niedermoor (über Verlandung oder Versumpfung)
  • direkt (Wurzelechtes Hochmoor) auf feuchtem, nährmineralarmen Böden
Abb. 5 Moortypen

Hochmoore

Aufbau und Hochmoortypen

Abb. 6 Aufbau eines mitteleuropäischen Hochmoors

Das Aussehen und der Aufbau der Regenmoore verändert sich von dem sehr atlantischen Klima des äußersten Westeuropas zum kontinentalen Klima Osteuropas. Die Deckenmoore Schottlands und Irlands haben sich aus ursprünglich bewaldeten Gebieten durch menschlichen Einfluss, insbesondere durch Beweidung, an waldfreien Standorten entwickeln können.

Abb. 7 Aussehen der Regenmoore in unterschiedlichen Klimabereichen Europas

Nach Norden schließt an die Zone der echten Hochmoore die Zone der Aapamoore an. Sie sind im kalt gemäßigten Klima zirkumpolar verbreitet und bestehen aus hangparallel verlaufenden Wällen und Senken. Die Wälle haben Hochmoorcharakter (ombrotroph), die Senken Niedermoorcharakter (minerotroph). Noch weiter nach Norden, nördlich der Baumgrenze, folgt die Zone der Palsenmoore, deren hügelartige Strukturen an mehrjähriges Bodeneis gebunden sind. Noch weiter nach Norden folgen auf durchgehend gefrorenen Permafrostböden Polygonmoore, deren polygonartige Strukturen durch Frosttrockniss entstanden sind, als nach einer längeren Feuchtperiode im Atlantikum (7270-3710 v. Chr.) das Klima kälter wurde. Dieser Moortyp ist typisch für Nordostsibirien und er ist besonders vom Klimawandel bedroht (POLYGON, Uni Greifswald 2011-2014).

Abb.8 Nördliche Moore

Torfmoose und Hochmoorwachstum

Voraussetzung für die Hochmoorbildung ist die Ansiedlung von Torfmoosen (Gattung Sphagnum).Torfmoose können aufgrund ihres anatomischen Baus das 20 bis 30 fache ihres Trockengewichtes an Wasser aufnehmen und speichern. Außerdem gestattet ihnen ein besonderer Ionenaustauschmechanismus selbst aus extrem nährmineralarmen Wasser die wenigen enthaltenen Kationen im Austausch gegen H+– Ionen herauszufangen. Dies bewirkt eine sehr starke Ansäuerung des Wassers (bis zu pH 3 (Dierßen u. Dierßen 2008) und damit eine weitgehende Ausschaltung von Konkurrenten. Als  Ionenaustauscher wirken dabei vor allem bestimmte Substanzen in der Zellwand. Ob die so herausgefangenen Ionen tatsächlich der Mineralstoffzufuhr der Sphagnum-Pflanze dienen, ist allerdings fraglich.. Möglicherweise ist entscheidend, dass auf diese Weise für die Sphagnumzellen giftige Calcium- und Aluminiumionen aus dem aufsteigenden Wasser entfernt werden.

Abb. 9 Morphologie der Torfmoose (Sphagum magellanicum)

Abb. 10 Räumliche Darstellung eines Sphagnum-Blättchens mit toten Hyalocyten ( Wasserspeicherzellen) und lebenden Chlorocyten

Die Torfmoospolster und – decken wachsen immer höher über den Grundwasserspiegel hinaus und in dem abgestorbenen Moostorf hält sich das Regenwasser wie in einem Schwamm. So können bis zu 5 m über das Relief emporgewölbte Torfschilde entstehen, aus denen am Rand ständig  saures, nährsalzarmes Wasser abfließt und sich über das Randgehänge in dem sogenannten Randsumpf („Lagg“) ansammelt. Dieser Randsumpf ist dadurch etwas mineralstoffreicher als die Moorhochfläche.

Dabei wächst die Torfmoosdecke nicht gleichmäßig in die Höhe. Man unterscheidet zwischen höheren Bulten und tieferen Schlenken. In den Schlenken ist der Zuwachs am stärksten, dadurch werden aus Schlenken mit der Zeit Bulte und umgekehrt.

Abb. 11 Bult-Schenken-Komplex (Abbildung aus Probst, W. 1978)

In vielen Veröffentlichungen wird angegeben, dass das Torfwachstum in Mitteleuropa etwa 10 cm pro 100 Jahre beträgt. Die größten Torfmächtigkeiten, die man erbohrt hat, liegen um 10 m. Dies würde einer Entstehung unmittelbar nach dem Ende der Eiszeit entsprechen. Allerdings sind die Wachstumsraten – wie schon oben ausgeführt – stark von den jeweiligen Umweltbedingungen abhängig. Außerdem kann man davon ausgehen, dass sich das Hochmoorwachstum mit zunehmender Höhe verlangsamt, da sich der schwerkraftbedingte Wasserabfluss verstärkt und außerdem Zersetzungsvorgänge in den tieferen Schichten und zunehmender Druck der darüberliegenden Schichten zu einem Zusammensacken führen.

In dem obersten halben Meter eines Hochmoores lässt sich ein Torfbildungshorizont (Akrotelm, von lat. telma = Moor) von einem Torfablagerungshorizont (Katotelm) unterscheiden. In einer obersten etwa 2-5 cm dicken Schicht des Akrotelms sind die Torfmoose photosynthetisch aktiv (euphotische Zone). An der Untergrenze dieser Schicht beträgt die Lichtintensität noch etwa 1 % des Oberflächenwertes. In der anschließenden aphotischen Zone, einer 10-50 cm dicken Schicht, sind die Torfmoose weitgehend abgestorben.  Sie ist noch von lebenden Wurzeln der Gefäßpflanzen durchzogen. Abgestorbene Pflanzenteile werden von Bakterien und vor allem von Pilzen aerob abgebaut. Der Stickstoffgehalt ist hier noch niedriger als in der Oberflächenschicht (C/N bis 75 gegenüber C/N  50 in der Wachstumszone der Torfmoose, Dierßen und Dierßen 2008).

Unterhalb der aphotischen, noch sauerstoffhaltigen Zone folgt das Katotelm, beginnend mit einer Verdichtungszone von  2-15 cm Mächtigkeit. Die Pflanzenreste sind hier schon stärker zersetzt und werden durch das aufliegende Gewicht verdichtet. Darunter folgt ein mehr oder weniger ausgedehntes Torflager. Wegen der starken Verdichtung ist es nur wenig wasserdurchlässig. Der im Wasser enthaltene Sauerstoff ist deshalb schnell verbraucht und die weiteren Zersetzungsvorgänge werden nun von Anaerobiern übernommen, wobei vor allem Methan gebildet wird .

Abb. 12 Hochmoorschichtung
Abb. 13 Sumpf-Torfmoos (Sphagnum palustre). Der Übergang von der euphotischen in die aphotische ist gut an der Farbänderung zu erkennen.

Aus der weiteren Schichtenfolge lässt sich die Entstehungsgeschichte des Moores ableiten. In der Abbildung ist die Schichtenfolge in einem Verlandungs-Hochmoor dargestellt.

Abb. 14 Schichtenfolge in einem Verlandungs-Hochmoor

Das Torfmoos-Mikrobiom und mögliche symbiotische Beziehungen

Die Erforschung des Mikrobioms der Sphagnumpflanzen ist noch in ihren Anfängen und erst durch neueste Möglichkeiten der Genomsequenzierung (next generation sequencing) wurden Fortschritte erzielt. Zunächst ging es um den Nachweis der verschiedenen beteiligten Mikrobionten. In den Sphagnumpflanzen befinden sie sich vor allem in den wasserspeichernden Hyalocyten, in den lebenden Chlorocyten konnten nur wenige Bakterien nachgewiesen werden. Man kann die Hyalocyten geradezu als kleine Kulturgefäße für Mikroben ansehen, von denen die Moose profitieren. Wie Untersuchungen an lebenden Sphagnumköpfchen zeigten, enthalten sie vor allem Proteobakterien und Acidobakterien. Cyanobakterien und Archäen spielen kaum eine Rolle (Kostka et al. 2016).

Untersuchungen zur Funktion des Mikrobioms ergaben eine besondere Bedeutung  methanotropher Proteobakterien, die gleichzeitig azidotroph sind, also N2 assimilieren. Dies könnte erklären, warum die Stickstoffspeicherung in Sphagnummooren in Gebieten mit sehr geringen Konzentrationen von Stickstoffverbindungen in der Luft deutlich höher ist als der daraus zu erwartende Stickstoffgehalt. Das „Futter“ für die methanotrophen Bakterien liefert das in tieferen Moorschichten von methanogenen Bakterien und Archäen produzierte Methan. Der Sauerstoff wird auch von den Photosynthese betreibenden Sphagnumköpfchen bereitgestellt. Möglicherweise könnten die Bakterien auch von den Torfmoos-Chlorocyten abgegebenen Kohlenhydraten profitieren. Durch Isotopmarkierung konnte nachgewiesen werden, dass sich der Luftstickstoff tatsächlich in Proteinverbindungen der Sphagnen wieder finden lässt (Vile et al. 2014). Dorthin könnte er durch direkte Abgabe von Stickstoffverbindungen (zum Beispiel Ammonium) durch die methanotrophen Bakterien oder über die Freisetzung von Stickstoffverbindungen aus abgestorbenen Bakterien gelangt sein. Auch Konsumenten der Bakterien könnten die Sphagnen über ihre Ausscheidungen düngen. Die Hinweise verdichten sich, dass es sich bei diesen Stoffwechselbeziehungen um eine echte Symbiose handelt, vergleichbar mit Knöllchenbakterien und Leguminosen.

Abb.15 Mögliche Stoffumsätze in der obersten Torfmoosschicht. Zwischen Sphagnen und methanotrophen Proteobakterien besteht eine symbiotische Beziehung.
Abb. 16 Beziehungen zwischen Sphagnum und methanotrophen Proteobakterien

Es wäre denkbar, dass ein erhöhter Eintrag von Stickstoffverbindungen aus der Luft zu einer Verringerung der N2 Assimilation führen würde. Dies könnte wiederum die Methanabgabe der Moore beeinflussen (erhöhen) (Vile et al. 2014).

Pflanzen und Tiere

Auf wachsenden Hochmoorflächen kommen nur wenige Gefäßpflanzenarten vor. Neben dem Scheidigen Wollgras (Eriophorum vaginatum, vgl. Titelbild) sind dies die Heidekrautgewächse Moosbeere (Vaccinium oxycoccus) und Rosmarinheide (Andromeda polyfolia) sowie der insektenfressende Rundblättrige Sonnentau (Drosera rotundifolia). An trockeneren Bereichen können sich als weitere Heidekrautgewächse Gewöhnliche Glockenheide (Erica vulgaris) und Besenheide (Calluna vulgaris) ansiedeln, im Randbereich auch Heidelbeeren (Vaccinium myrtyllus), Preiselbeeren (Vaccinium vitis-idaea) und Rauschbeeren (Vacciinium uliginosum), in von atlantischem Klima geprägten Bereichen Norddeutschlands auch der Gagelstrauch (Myrica gale) und die Krähenbeere (Empetrum nigrum), in Bereichen mit etwas kontinentalerem Klima Nordostdeutschlands der in Deutschland sehr selten gewordene Sumpf-Porst (Rhododendron tomentosum, Syn.:Ledum palustre). Weitere Hochmoorpflanzen sind In feuchteren Bereichen das Weiße Schnabelried (Rhynchospoa alba), Schmalblättriges Wollgras (Eriophorum angustifolium) und weitere Zypergrasgewächse.

Abb. 17 Beispiele für Gefäßpflanzen des Hochmoors

Auch die Fauna der Hochmoore besteht vorwiegend aus Spezialisten. Für Fische ist das Wasser zu sauer, wegen des Calciummangels fehlen Schnecken, Muscheln und Krebse. Typische Hochmoor-Insekten sind zum Beispiel die Hochmoor-Mosaikjungfer (Aeschna subarctica) und der Hochmoor-Perlmutterfalter (Boloria aquilonaris), dessen Raupe sich von Moosbeeren ernährt. Unter den Wirbeltieren sind vor allem der Moorfrosch und die Kreuzotter – oft in ihrer schwarzen Variante – zu nennen Regelmäßig in Hochmooren anzutreffende Vögel sind zum Beispiel Großer Brachvogel, Goldregenpfeifer, Kranich, Birkhuhn, Sumpfohreule, Krick – und Knäkente.

Tropische Moore

Torfbildung findet vor allem in kühleren Klimaregionen statt, wo der Abbau organischer Substanz insgesamt langsamer verläuft. Aber es gibt auch Torfgebiete unter tropischen Sumpfwäldern, zum Beispiel im Amazonasgebiet, im Kongobecken und in Indonesien. Voraussetzung sind hohe Niederschläge – deutlich über 2000mm im Jahr – welche die Evaporation übersteigen.

Die großen Torflagerstätten in der zentralen Senke des Kongobeckens, der sogenannten Cuvette Centrale, wurden erst vor wenigen Jahren entdeckt und vermessen. Die Torfschichten sind zwischen 2,4 und 5,9 m dick (Dargie et al. 2022). Die Wissenschaftler stellten fest, dass die Torflager immer unter bestimmten Waldgesellschaften auftreten, deren Ausdehnung sie mithilfe von Satellitenbildern auf 145.000 km² berechnen konnten. Das sind knapp 10 % des gesamten Kongobeckens. Nach Berechnungen der Forscher könnten in diesem Torflager 30,6 Milliarden t Kohlenstoff gespeichert sein.

Die Fläche der Moorgebiete in Südostasien wird auf 230.000 km² geschätzt (Page, Riley, Wüst 2006). Sie sind stark bedroht durch Brandrodung und Umwandlung in Agrarflächen. In unberührten Zustand haben diese Moore einen niedrigen pH-Wert (3-4) und niedrige Nährmineraliengehalte. Der Gehalt an organischem Kohlenstoff übertrifft 50 %, während der Stickstoffgehalt bei 2 % liegt. Im Gegensatz zu nördlichen Hochmooren ist der Ligningehalt des Torfes hoch und der Zellulosegehalt relativ niedrig. Dies hängt damit zusammen, dass die Vegetation dieser tropischen Moore vor allem aus Gehölzen besteht. Ihre Kohlenstoffspeicherung wird auf 50-70 Gigatonnen geschätzt, der jährliche Zuwachs ist unter günstigen Bedingungen drei bis viermal so hoch wie bei nördlichen Regenwassermooren.

Mensch und Moor

Brennstoff

. In Irland, Finnland und Schweden gibt es bis heute Stromkraftwerke, die mit Torf betrieben werden. Früher wurden die in Ziegelform gebrachten Torfbriketts an der Luft getrocknet, bevor sie als Brennmaterial genutzt werden konnten. In manchen Mooren wurden die Flächen kleinparzellig aufgeteilt, und die einzelnen Parzellen wurden von unterschiedlichen Landwirten zur Brennstoffgewinnung genutzt. Aus den kleinen Torfstichen solcher Moore ist – bei mäßiger Entwässerung – eine Regeneration möglich.

Abb. 18 Besitzverhältnisse im Jardelunder Moor bei Flensburg (Katasterplankarte 1:5000, Stand 1978)

Braunkohle und Steinkohle sind fossile Torfe.

Gartenbau

Heute dient der Torfabbau vor allem der Gewinnung von Pflanzensubstrat in der Gärtnerei, für Presstöpfe zur Sämlingsanzucht und für Wurzelballen der meisten im Handel angebotenen Pflanzen, sowie für die meisten käuflichen Blumenerden. Im Gegensatz zum Brennmaterial ist zu diesem Zweck Weißtorf besonders gut geeignet. Es handelt sich um ein sehr einheitliches Substrat mit ausgezeichneter Wasseraufnahmefähigkeit und der Fähigkeit zur Mineralstoffspeicherung. Sein niedriger pH-Wert kann durch Kalkung bis über den Neutralpunkt hinaus verändert werden. So können mit diesem Grundsubstrat sehr unterschiedliche Pflanzsubstrate hergestellt werden.

2018 wurden in Deutschland etwa 3,7 Millionen m³ Torf abgebaut – von 2002-2009 waren es nach Auskunft der Bundesregierung noch durchschnittlich 8,2 Millionen m³ pro Jahr – und rund 4,1 Millionen m³ importiert, vor allem aus dem Baltikum. Allerdings wurden in Deutschland seit den 1980er Jahren keine intakten Moore mehr für den Abbau freigegeben, sondern nur noch  Gebiete, die vorher landwirtschaftlich genutzt wurden. Die zu entnehmenden Torfmengen werden genau vorgegeben und es besteht eine Renaturierungspflicht für die Abbauer (Bundesinformationszentrum Landwirtschaft 2020). Alte Abbauverträge sind davon allerdings nicht berührt (s.u. Reichermoos) .

Ein völliger Verzicht von Torf im Erwerbsgartenbau wäre prinzipiell möglich aber sehr aufwendig, denn alle Ersatzsubstrate haben keine so guten und einheitlichen Eigenschaften wie Hochmoortorf. Infrage kommen Grünkompost, Rindenhumus Holzfasern. Kokosfasern, Blähton oder Perlit (Amberger-Ochsenbauer, Meinken 2020).

Medizin

Für Medizin und Körperpflege spielen Moorbäder und Moor-(Fango) packungen (von lat. fango = Schlamm, Schlick) eine wichtige Rolle. Der dickflüssige Brei aus Schwarztorf wird mit Temperaturen von 38-40° verwendet. Neben der Wärme sollen vor allem die im Torf enthaltenen Huminsäuren nicht nur die Haut weich machen und die Durchblutung fördern, sondern auch eine günstige Wirkung auf das endokrine System ausüben.

Abtorfung im Reichermoos bei Vogt, Kreis Ravensburg. Für die Heilbäder in Bad Wurzach, Bad Waldsee, und Bad Buchau soll dieser Torf nach der Regionalplanung von 2021bis zum Jahr 2070 sich abgebaut werden. 1970 verpachtete das Land Baden-Württemberg den Torfabbau im Reicher Moos. Die Pächter fräßen der Torf mit riesigen Maschinen ab. Dagegen wendet sich eine Bürgerinitiative. (Foto W. Probst, 5.7.1983)

Filtermaterial

In der Aquaristik und in der Teichwirtschaft wird Torf als Filtermaterial zur Herabsetzung des pH-Wertes und der Carbonathärte verwendet. Außerdem sollen die Fulvosäuren im Schwarztorf die Schleimhäute der Fische vor bakteriellen Infektionen schützen. Durch Torffilterung kann man das Aquarienwasser den Verhältnissen in tropischen Schwarzwasserflüssen annähern, aus denen viele Zierfische stammen. Als natürlicher Ionenaustauscher kommt Torf auch in der chemischen Industrie zum Einsatz. Aus Torf lässt sich auch Aktivkohle zur Filterung herstellen, die vor allem in Chemielabors zum Einsatz kommt.

Weitere Nutzungen

Torffasern eignet sich zur Herstellung von Isolationsmaterial, sie lassen sich zu leichten und warmen Textilien und Unterlagen verarbeiten. Bis heute dienen Torffasern als natürlicher Füllstoff für Matratzen, Bettdecken und Kissen.

Vor allem im Pferdeställen wurde Torf als Einstreu genutzt.

 Moorkultivierung

Die großen Moorflächen vor allem in Norddeutschland aber auch im süddeutschen Alpenvorland waren lange Zeit landwirtschaftlich nicht zu nutzen. Um die Ernährung der wachsenden Bevölkerung sicherzustellen, wurden deshalb immer wieder Versuche unternommen solche Moorflächen für die landwirtschaftliche Produktion nutzbar zu machen.

Die sogenannte Fehnkultur (von niederländisch Veen = Moor) wurde in den Niederlanden entwickelt aber schon im 17. Jahrhundert auch in Nordwestdeutschland angewandt. Dabei wurden zunächst tiefe Entwässerungskanäle angelegt, durch die der gestochene Torf mit Schiffen abtransportiert werden konnte. Auf dem Rückweg wurde von den Schiffen dann Schlick mitgebracht und vor allem mit dem Weißtorf vermischt. Beidseitig der Kanäle entstanden nach und nach typische Fehnsiedlungen.

 Vor allem Im Laufe des 18. und 19. Jahrhunderts wurden in Deutschland verschiedene weitere Arten der Moorkultivierug entwickelt. Dabei spielten Entwässerung, Abtorfen, Brennen, Tiefpflügen zur Vermischung mit dem mineralischen Untergrund und Kalkdüngung eine wichtige Rolle. Oft wurde die schwierige Bearbeitung der Torfböden durch neue Siedler geleistet, die aus ihrer Heimat durch Not oder Verfolgung vertrieben worden waren.

Alle Kultivierungsmaßnahmen führten dazu, dass die Torfneubildung und -ablagerung gestoppt wurde und dadurch aus der Kohlenstoffsenke durch anaeroben Abbau der Torfschichten eine Kohlenstoffquelle wurde.

Paludikultur

Eine neue Form der Moornutzung ist die „Paludikultur„. Kulturpflanzen sind hier die Torfmoose, die großflächig unter Hochmoorbedingungen kultiviert werden. Die Torfmoosernte soll den Torfabbau ersetzen. Dadurch wird die Kohlenstofffreisetzung der üblichen Moorkultivierung verhindert und eine ökonomisch tragbare Alternative aufgezeigt. Nasskulturen können außer auf Hochmoorstandorten auch auf Nieder- und Zwischenmooren und anderen kohlenstoffspeichernden Feuchtgebieten entwickelt werden. Die produzierte Biomasse aus Schilf, Binsen, Sauergräsern und anderen Feuchtpflanzen könnte als Material für unterschiedliche Baustoffe verwendet werden (Wichtmann, Schröder, Joosten, 2016).

Möglichkeiten des Moorschutzes

Nach Dierßen und Dierßen (2008) gibt es im Prinzip drei Möglichkeiten des Schutzes:

  1. Bewahren eines derzeitigen Zustandes bzw. zulassen einer natürlichen Sukzession ohne Eingriffe
  2. Pflegen eines aktuellen wünschenswerten Zustandes
  3. Entwickeln eines Zustandes, der den jetzigen Zustand verbessert, durch geplante Pflege und Steuerungseingriffe (Restitution)

Die erste Vorgehensweise bietet sich an, wenn der derzeitigen Zustand sehr gut ist und sich durch Eingriffe kaum verbessern lässt oder wenn man erwarten kann, dass eine natürliche Sukzession zu einem wünschenswerten Zustand führt. Ein intaktes Hochmoor mit funktionierendem Bult-Schlenken-Komplex sollte vor Eingriffen abgeschirmt werden. Aber auch ein teilweise abgetorftes Hochmoor, bei dem sich in Torfstichen gute Sukzessionen mit Torfmoosen entwickeln, kann man am besten sich selber überlassen.

In vielen Fällen kann man erkennen, dass ein derzeitiger guter Zustand dabei ist, sich zu verschlechtern. So können noch vorhandene Bult-Schlenken-Komplexe bei zunehmender Austrocknung immer stärker von Besenheide besiedelt werden und ihr Wachstum einstellen. In diesem Fall könnten Maßnahmen gegen die Entwässerung und Austrocknung den besseren Zustand erhalten. Auch das starke Aufkommen von Baumwuchs, vor allem von Birken, ebenfalls im Zusammenhang mit Austrocknung aber auch mit Nährmineraleintrag, kann durch Entfernen des Birkenaufwuchses gebremst werden. In jedem Fall ist bei allen Maßnahmen eine gründliche Analyse der Wirkungszusammenhänge Voraussetzung für einen Erfolg.

Besonders schwierig ist die Restitution, im Hinblick auf Hochmoore also die Entwicklung relativ nährmineralreicher und von menschlichen Aktivitäten stark beeinflusster Flächen zurück zu nährmineralarmen, vom Regenwasser abhängigen Torfmoosflächen. Dies liegt vor allem daran, dass sich in der von Landwirtschaft, Siedlungen und Verkehr geprägten mitteleuropäischen Kulturlandschaft Düngemitteleintrag und Entwässerung kaum vermeiden lassen.

Abb. 19 Wiedervernässte Fläche im Wurzacher Ried

Moore im Biologieunterricht

Mögliche Unterrichtsthemen

Vom Gletschersee zum Hochmoor – ein Beispiel für nacheiszeitliche Landschaftsentwicklung

Für einige mitteleuropäische Moore ist die Entwicklung vom Eisstausee am Ende der letzten Kaltzeit bis zum Hochmoor gut dokumentiert. Diese zeitliche Entwicklung lässt sich bei einer Reise in den Untergrund nachvollziehen.

Abb. 20 Mit den verschiedenen Sedimentschichten eines Moores kann man in die Vergangenheit reisen

Speicher, Senken, Quellen? – Wie Moore sich auf die Treibhausgase der Atmosphäre auswirken  

Der aus wenig zersetzen pflanzlichen Abfallstoffen bestehende Torf ist ein Kohlenstoffspeicher. Aber ob solche in Mooren gebundene Torfschichten Senken oder Quellen für Treibhausgase sind, hängt von den aktuellen Bedingungen ab. Für den Schutz und die Restitution von Mooren sind die Kenntnisse dieser Zusammenhänge eine wichtige Voraussetzung.

Vom Moos zur Landschaft – Morphologie und Physiologie der Torfmoose als Voraussetzung für die Hochmoorbildung erkennen

Die mikroskopische Untersuchung von Torfmoosen lässt erkennen, welche morphologischen Voraussetzungen ihrer ausgezeichneten Wasserspeicherfähigkeit zugrunde liegen. Wasserspeicherung, kapillare Wasserleitung und durch Torfmoose bedingte Veränderung des Elektrolytgehalts lassen sich experimentell untersuchen. Aus den Ergebnissen erklärt sich die Bedeutung der Torfmoose für die Hochmoorbildung.

Abb. 21 Mikroskopische Untersuchungen an Torfmoosen lassen die morphologischen Grundlagen ihrer Wasserspeicherfähigkeit erkennen (aus Probst 1987)
Abb. 22 Wasserspeicherfähigkeit von Torfmoosen (aus Probst 1987)

Die Ionenaustauschfähigkeit von Torfmoosen kann man nachweisen, indem man die Moose Wasser mit Elektrolytgehalt aussetzt. Das zu prüfende Moospolster – etwa zwei Hand voll – wird in einem Küchensieb mehrfach mit destilliertem Wasser ausgespült und ausgedrückt, dann werden vier gewichtsgleiche Teil des Polsters zu etwa 100 g, feucht, in 3 Bechergläser mit je 200 ml unterschiedlicher Salzlösungen und einem Becherglas mit 200ml destilliertem Wasser verteilt (wie in Abb. 21 dargestellt). In jedem Ansatz wird nach 10, 20 und 40 Minuten der pH-Wert bestimmt. Die Blindprobe mit destilliertem Wasser zeigt keine Veränderung des pH-Wertes, die Probe mit der 0,01 N Calciumschloridlösung zeigt die stärkste Ansäuerung, da die Ansäuerung in gewissen Grenzen der Menge der angebotenen Kationen proportional ist und dass durch zweiwertige Calciumionen mehr H+-Ionen freigesetzt werden können als durch einwertige Kaliumionen.

Abb. 23 Versuch zur Ionenaustauschfähigkeit von Torfmoosen (aus Probst 1987)

Torfmooskultur – eine Alternative zum Torfabbau?

Zur Jahrtausendwende wurden jährlich 25 Millionen m³ Torf im Gartenbau genutzt; die auf einer Fläche von 800 km² gewonnen wurden. Wäre die gezielte Kultur und Ernte von Torfmoosen eine umweltfreundliche Alternative? Wenn man annimmt, dass damit 2500 kg Torfmoos -Trockenmasse pro Hektar und Jahr gewonnen werden könnten, würde hierzu eine Fläche von 15.000 km² benötigt, die so nicht zur Verfügung steht. Könnte die Paludikultur trotzdem ein sinnvoller und klimaschonender Zweig der Landwirtschaft werden?

Moosbeeren und Sonnentau – Nischenbildung am Extremstandort Hochmoor

Für Gefäßpflanzen sind Hochmoore ein sehr extremer Standort. Nur wenigen Arten ist es gelungen, eine ökologische Nische aufzubauen, die zu diesen Biotop passt. Der insektenfressende Rundblätterige Sonnentau und die Gewöhnliche Moosbeere, ein immergrüner, niederliegend fadenförmige wachsender Zwergstrauch, sind Beispiele für unterschiedliche Nischenbildung am selben Standort.

Schmetterlinge im Hochmoor: Hochmoor-Perlmutterfalter, Hochmoor-Gelbling und Hochmoor-Bläuling

Die drei Schmetterlingsarten sind eng an Hochmoore gebunden. Wie andere Arten gelten sie als Eiszeitrelikte, die nach der Erwärmung in den Hochmooren eine letzte Zuflucht gefunden haben. Die Raupe des Hochmoor-Perlmutterfalters ernährt sich nur von den Blättern der Moosbeere, während die beiden anderen Arten auch Heidelbeeren, Preiselbeeren und Rauschbeeren als Futterpflanzen annehmen. Die Falter sind auf nektarreiche Blüten der umgebenden Vegetation angewiesen. Die Ursachen für die Gefährdung dieser Arten werden analysiert.

https://niedersachsen.nabu.de/tiere-und-pflanzen/insekten/schmetterlinge/hochmoorperlmutterfalter/index.html

Moore als Archive der Natur- und Kulturgeschichte

Moore besitzen besondere konservierende Eigenschaften, die vor allem dem Sauerstoffmangel und dem niedrigen pH-Wert zu verdanken sind. So können in Mooren eingelagerte Werkzeuge, Waffen oder Schmuck ebenso Jahrtausende überdauer, wie Siedlungsstrukturen und Reste von Pflanzen und Tieren (und Menschen!). Dies gilt auch für Mikrostrukturen wie Pollen und Sporen, mit deren Hilfe man die nacheiszeitliche Vegetationsgeschichte rekonstruieren konnte (Pollenanalyse).

https://www.researchgate.net/profile/Andreas-Bauerochse/publication/282755633_Moore_als_Archive_der_Natur-_und_Kulturgeschichte_-_das_Arbeitsgebiet_der_Moorarchaologie/links/574426d108ae9ace841b496e/Moore-als-Archive-der-Natur-und-Kulturgeschichte-das-Arbeitsgebiet-der-Moorarchaeologie.pdf?origin=publication_detail

Kompetenzen

Tab. 6 Kompetenzen, die mit dem Unterrichtsthema Moore angestrebt werden können

Quellen

Amberger-Ochsenbauer, S., Meinken, E. (2020): Torf und alternative Substratsausgangsstoffe. Herausgeber: Bundesanstalt für Landwirtschaft und Ernährung. https://www.ble-medienservice.de/0129/torf-und-alternative-substratausgangsstoffe

Bundesamt für Umwelt, Wald und Landschaft – Schweiz – (2002): Moore und Moorschutz in der Schweiz. Bern http://www.wsl.ch/info/mitarbeitende/scheideg/20141103_Bericht_Studierende.pdf

Bundesinformationszentrum Landwirtschaft (2020): Torf: unersetzlich oder verzichtbar? https://www.landwirtschaft.de/diskussion-und-dialog/umwelt/torf-unersetzlich-oder-verzichtbar

Bundestag (2016): Kein Verbot von torfhaltigen Substraten. https://www.bundestag.de/webarchiv/presse/hib/201601/401876-401876

Dargie, G.C. et al. (2017): Age, extent and carbon storageof the central Congo Basin peatland complex. Nature 542, 7639, pp 1476-1487

Dierßen, K./Dierßen, B. (2008): Moore. Ökosysteme Mitteleuropas in geobotanischer Sicht. Stuttgart:Ulmer

Eigner, J. (2003): Möglichkeiten und Grenzen der Renaturierung von Hochmooren. Laufener Seminarbeiträge, 1/03, S. 23 -36, Laufen/Salzach: Bayer: Akad. f. Naturschutz u. Landschaftspflege

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer (UTB)

Frey, W./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Garcin, Y., Schefuß, E., Dargie, G.C. et al. (2022): Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature. https://doi.org/10.1038/s41586-022-05389-3

Gewin, V. (2020): Bringing back the bogs. Nature 578, pp. 204-208

Göttlich, K. (Hrsg.,1990) Moor- und Torfkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

Hakobyan, A., Liesack, W. (2020): Unexpectedmetabolitic versality among type II methanotrophs in the alphaproteobacteria. Biol.Chem.401(12). pp1469-1477

Hölzel, N. T. et al. (2019): Leitfaden zur Torfmoosvermehrung für Renaturierungszwecke. Deutsche Bundesstiftung Umwelt, Osnabrück.

Jäger, C. (2020): Klimaschutz braucht Moorschutz. München: Oekom

Joosten,mH:;tanneberger, F., Moen, A. (eds., 2017): Mires and peatlands of Europe.Status, distribution and conservation.Stutttgart: Schweizerbart

Kremer, B. P./Oftring,B. (2013): Im Moor und auf der Heide. Bern CH: Haupt

Kosta ,J.E. et al. (2016): The Sphagnum microbiom: new insights from an ancient plant lineage. New Phytologist 211(1), pp 57-64. doi: 10.1111/nph.13993.

LLUR (2015): Moore in Schleswig-Holstein Geschichte – Bedeutung – Schutz. Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (LLUR). 162 S

Ministerium für ländlichen Raum und Verbraucherschutz Baden-Württemberg (2017): Moorschutzprogramm Baden-Württemberg, 2. A. https://mlr.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/2_Presse_und_Service/Publikationen/Umwelt/Naturschutz/Moorschutzprogramm_BW.pdf

Mooratlas (2023), Eimermacher/stockmarpluswalter (M), CC.BY 4.0.

Overbeck, F. (1975): Botanisch-ökologische Moorkunde. Neumünster: Wachholtz

Page, S.E., Rieley, J.O.,Wüst, R. (2006): Lowland tropical peatland of Southeast Asia. In: Martini,I.P., MatinezCortizas, A., Chesworth. E. editors: Peatland: Evolution and records of environmental and climate changes. Chapter 7, pp 145-170

POLYGON, Universiät Greifswald 2011-2014 https://botanik.uni-greifswald.de/moorkunde-und-palaeooekologie/forschung/projekte/polygon/

Probst, W. (1978): Zur Vegetation des Jardelunder Moores. Die Heimat 85 (Heft 10/11), S. 2 72-296

Probst, W. (1987): Biologie der Moos- und Farnpflanzen, 2. A.. Heidelberg/Wiesbaden: Quelle und Meyer

Proff, I., Furtak, S. (2022): Nasse Lawirtschaft. In: Spektrum Kompakt Feuchtgebiete, S.41-54, Heidelberg: Spekrum

Ricker, K.-M. (2021): Moore für das Klima. Die Bedeutung der Moore für den Klima- und Naturschutz kennenlernen. Biologie 5 – 10, S. 20-23, Hannover: Friedrich

Sachunterricht Grundschule Nr.68/2015: Lebensraum Moor – Heft und Materialpaket. Seelze: Friedrich-Verlag

Springer, P. (2013): Torfflächen nachhaltig nutzen – Zukunft: Peatfarming. GartenbauProfi, 8/13. S-48-50.

Springer, P. (2017): Sphagnum als Torfersatz. GartenbauProfi, 8/13. S-48-49

Steiner, G.M. (2005): Moortypen. Stapfia 0085, S. 5-26

Succow, M. (2001): Moorkunde, 2. A., Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Succow, M., Jeschke, L. (2022): Deutschlands Moore: Ihr Schicksal in unserer Kulturlandschaft. Rangsdorf: Natur& Text

Succow, M./Joosten, H. (2001): Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Trepel, M. (2007/8): Zur Bedeutung von Mooren in der Klimadebatte. Jahresbericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein.

Vile, M. A. et al. (2014): N2-fixation by mmethanotrophs sustains carbon and nirtrogen accumulation in pristine peatlands. Biogeochemistry Vol121, pp 317-328, DOI:10.1007/s10533-014-0019-6

Wichtmann, W., Schröder, C. & Joosten, H. (Hrsg.) 2016: Paludikultur – Bewirtschaftung nasser Moore. Stuttgart: Schweizerbart

Umweltbundesamt – Österreich – (2004): Moore in Österreich. Wien. https://www.google.com/search?client=firefox-b-d&q=Umweltbundesamt+%E2%80%93+%C3%96sterreich+%E2%80%93+%282004%29%3A+Moore+in+%C3%96sterreich.+Wien

WWF (2010): Klimaschutz-Schnäppchen: Moorschutz bringt viel für wenig Geld  http://www.wwf.at/de/moore/

Yu, Z. et al. (2010): Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, Volume 37, Issue 13 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL043584

http://www.aktion-moorschutz.de/wp-content/uploads/Vortrag_Succow_MooreImNaturhaushalt.pdf

http://www.imcg.net/media/2016/imcg_bulletin_1611.pdf#page=29

https://www.moorwissen.de/moore-in-deutschland.html

Schleim in der Biologie

LINK-NAME LINK-NAME

Für den Jahrgang 2025 ist ein Unterricht Biologie Heft mit dem Thema „Schleim in der Biologie“ geplant. Als voraussichtlicher Herausgeber dieses Heftes suche ich Autor* innen für Unterrichtsmodelle zu diesem Thema. Diese Zusammenstellung soll Interesse wecken und zur Mitarbeit ermuntern.

Schleim ist ein bisschen ekelig aber gleichzeitig auch faszinierend.

Von Ernst Haeckels Urschleimtheorie über den intelligenten Schleimozean auf Stanislaus Lems Planet Solaris, Lovecrafts Shoggothen-Schleimmonstern und der wissenschaftich begründeten Horror-Zukunftsvision des Meeresbiologen  Daniel Pauly, eines Myxozäns, einer Erdepoche des Schleims, bis zum Kinderspielzeug Magic Slime, das auch Erwachsene fasziniert, zieht sich eine verzweigte Schleimspur durch die Vorstellungswelt der Menschen.

Bei Tieren und Menschen werden Schleimstoffe in Drüsen sezerniert. Sie dienen dem Schutz von Schleimhäuten und sie sind Bestandteil von Speichel und Magensaft sowie von Knorpeln, Sehnen, Haut und anderen Geweben. Für manche Tiergruppen ist die Schleimbildung besonders charakteristisch, zum Beispiel für die Mollusken. Fischen hilft ihr Schleimüberzug, den Widerstand des Wassers zu verringern und das Anheften von Schmarotzern und Krankheitserregern zu verhindern. Eine sehr primitive Fischform, die zu den Kieferlosen gehörenden Schleimaale, produzieren über ihre in der Haut gelegenen Schleimdrüsen bei Bedrohung plötzlich so viel Schleim, dass Maul und Kiemen der angreifenden Fische verstopft werden und diese den Schleimaal wieder ausspucken.

Pflanzliche Schleime findet man vor allem in Früchten und Samen (Leinsamen, Chiasamen), aber auch in Rinden, Wurzeln und Blättern (Aloe). Die stark quellfähigen Substanzen dienen der Wasseraufnahme und dem Schutz vor Austrocknung, bei Früchten und Samen auch als Klebstoff. Diese Eigenschaften machen sie auch für den Einsatz in Medizin und Kosmetik interessant. Auch Algen, Pilze und Bakterien können gute Schleimproduzenten sein (Agar). Die Schleimpilze oder Myxogastria sind eine ganz besondere Gruppe von Lebewesen zwischen Einzellern und Vielzellern, die nach ihrer häufig schleimigen Konsistenz benannt sind.

Verfolgen wir einige dieser Schleimspuren:

Physik und Chemie der Schleimstoffe

Typisch für Schleimstoffe ist ihre Quellfähigkeit und der daraus resultierender hohe Wassergehalt sowie ihre Klebrigkeit. Physikalisch gehören die Schleime zur „weichen Materie“ (soft matter, McLeish 2020), Stoffen, die sich nur bedingt dem Aggregatzustand fest oder flüssig zuordnen lassen. Das sind z. B. außer Schleimen kolloide Suspensionen (Milch), Flüssigkristalle (verwendet in Displays), Elastomere (Gummi), Tenside (Seifenschaum) oder Gele (Götterspeise). In der Strömungslehre bezeichnet man solche Substanzen auch als Nichtnewtonsches Fluide. Im Gegensatz zu Newtonschen Fluiden ändert sich ihre Viskosität, wenn sich die auf sie einwirkende Scherkräfte verändern. Damit entsprechen sie nicht dem newtonschen Elementargesetz der Zähigkeitsreibung. Dies hängt damit zusammen, dass die Scherkräfte eine Veränderung der mikroskopischen Struktur bewirken und damit die Wechselwirkungen zwischen den Teilchen des Fluids beeinflussen.

Schleime bestehen aus sehr langgestreckten Molekülfäden, die nicht einfach fließen können, wie die viel kleineren Moleküle normaler Flüssigkeiten wie Wasser oder Ethanol. Denn die Fäden verstricken sich miteinander und gehen an Kontaktpunkten Verbindungen ein. Sie können sich nur bewegen, wenn sie an den Kontaktpunkten getrennt und wieder neu zusammengefügt werden. Ein Bild dafür sind die etwas aneinander klebenden Nudelfäden auf einem Teller Spaghetti. Man kann sie entwirren und „zum fließen bringen“, wenn man sie mit einer Gabel aufwickelt und dadurch parallelisiert. In dem submikroskopischen Schleim bewirkt die Brownsche  Molekularbewegung diese Entwirrung, die dafür sorgt, dass die einzelnen Molekülfäden ihren Weg durch das Gewirr finden. Die Viskosität des Schleims ist dabei außer von der Temperatur von den Eigenschaften der Fadenmoleküle abhängig. Wenn die Polymere keine einfachen Fäden sind, sondern Verzweigungen oder kammartige Strukturen besitzen, erhöht sich die Zähigkeit.

Abb. 1 Hyaluronan-Monomer

Viele tierischen Schleime bestehen aus Glykosaminoglykanen (GAG, auch als Mucopolysaccharide bezeichnet). Das sind saure Polysaccharide aus linear aneinandergereihten Disacchariden, zum Beispiel der Hyaluronsäure (Hyaluronan, von griech. Hyalos = Glas) aus dem Disaccharid aus D-Glucuronsäure und N-Acetyl-D-glucosamin (Abb.1). Mit über 50 000 Disaccharideinheiten hat Hyaloronan eine Molekülmasse von mehreren Millionen. Hyaluronan ist ein wichtiger extrazellulärer Bestandteil des Bindegewebes der Wirbeltiere. Neben der Wasserspeicherung ist ihre Druckstabilität (zum Beispiel in den Bandscheiben), und ihre Wirkung als Gelenk-Schmiermittel bedeutend. Der Glaskörper des Auges besteht zu etwa 98 % aus Wasser, Hyaluronsäure und Kollagenfasern. Im Gehirn bewirkt Hyaluronan den Wiederaufbau von Markscheiden (Remyelinisierung), weshalb ihr eine inhibitorische Wirkung bei Multipler Sklerose zugeschrieben wird. Bei Zellteilungen und Zellwanderungen scheinen Wechselwirkungen von Hyaluronsäure und Zelloberflächen eine Rolle zu spielen.

Abb. 2 In Zellmembran verankertes Mucin; violett: Proteinfaden; gelb: verzweigte Polysaccharidketten

Noch größere Makromoleküle sind die Mucine, Glykoproteine mit einem zentralen Proteinfaden an den kovalent gebundenen Kohlenhydratgruppen angeheftet sind. Die Kohlenhydrate werden erst nach der Translation vor allem an die Aminosäurereste Asparagin, Serin, Threonin oder Hydroxylysin angelagert. Durch die Polysaccharide können die Mucine sehr viel Wasser binden und damit das zentrale Protein vor Abbau unter der Einwirkung von Säuren schützen. Sie spielen eine wichtige Rolle für die Barrierefunktion der Schleimhäute. (Abb. 2 ). Durch Disulfidbrücken können sich Mucinmoleküle zu noch größeren Aggregaten verbinden. An den Enden der Polysaccharidketten finden sich teilweise Sulfatgruppen oder Sialinsäuregruppen, welche den bakteriellen Abbau erschweren. Mucine werden von verschiedensten Mikroorganismen (Bakterien und Archäen, Einzeller, Pilze, Schleimpilze) und Tieren gebildet.

Andere pflanzliche Schleime und Schleime von Algen und Bakterien bestehen vorwiegend aus Polysacchariden. Dazu zählen die Pectine der pflanzlicher Zellwände, die Galactomannane aus Samen von Hülsenfrüchtlern und die quellfähigen Polysaccharide klebriger Samenschalen wie etwa bei Wegerich- Arten („Flohsamen“ des Indischen Wegerichs werden zur Regulierung der Verdauung genutzt). Auch die die Alginate und Carageene verschiedener Algen bestehen aus Polysacchariden (Abb. 3,  4 )

Abb. 3 Schleimige Jochalgen. Vor allem in Frühjahr können Jochalgen wie Spirogyra oder Mougotia (im Bild) schleimige Watten in Pfützen, Kleingewässern und Gartenteichen bilden (Foto: W. Probst)

Biofilme

Abb. 4 Bathybius Haeckelii (nach heutigen Nomenklaturregeln müsste das Epitheton klein geschrieben werden „haeckelii“) (aus Haeckel 1870)

Ernst Haeckel hat vor 150 Jahren angenommen, dass alles Leben einem Urschleim entstammen würde, der den Meeresgrund überzieht. Dieser wabbernde Glibber, so die Vorstellung, sollte ständig neues Leben hervorbringen. Thomas Henry Huxley, wie Haeckel begeisterter Anhänger von Darwins Selektionstheorie, meinte 1868 diesen Urschleim in Proben des nordatlantischen Meeresbodens gefunden zu haben und benannte die Entdeckung Bathybius Haeckelii. Haeckel war hocherfreut und schrieb in einer Publikation 1870 „ Die wichtigste Tatsache, die aus Huxley‘s sehr sorgfältigen Untersuchungen des Bathybius hervorgeht, ist, dass der Meeresgrund des offenen Ozeans in den bedeutenderen  Tiefen (unterhalb 5000 Fuß) bedeckt ist mit ungeheuren Massen von freiem lebendem Protoplasma, … Dieser universelle Urschleim der älteren Naturphilosophie, der im Meer entstanden sein und der Urquell alles Lebens, das produktive Material aller Organismen sein sollte, … – er scheint durch Huxleys Entdeckungen des Bathybius zur vollen Wahrheit geworden zu sein“. (Ernst Haeckel 1870)

Abb.5 Stromatolithen in der Shark Bay an der Westküste Australiens (Foto E. Steiner 2005)
Abb. 6 Tintenstriche an Kalkfelsen der Gola Gorropu, Sardinien (Foto: W. Probst 1992)

Der von Thomas Henry Huxley beschriebene Bathybius haeckelii stellte sich allerdings schon bald als ein durch Alkoholkonservierung entstandenes anorganisches Produkt heraus (Wedlich 2019). Aber die von Mikroorganismen gebildeten und besiedelten Schleimschichten, Biofilme genannt, haben durchaus etwas Urschleimiges. Man kann davon ausgehen, dass es ähnliche Kongregationen schon seit Urzeiten gibt. Stromatolithen, Kalkstrukturen, die von schleimigen Bakterienschichten überzogen und aufgebaut werden, gelten als die ältesten Lebensgemeinschaften. Als Fossilien kennt man sie seit über 3 Milliarden Jahren und man findet sie noch heute, zum Beispiel an der Westküste Australiens (Shark Bay; Abb. 5). Für 2-3 Mrd. Jahre waren solche schleimigen Lebensgemeinschaften in den Meeren die einzigen Lebensformen. Aber ähnliche Aggregate könnten auch schon früh die Festländer besiedelt haben.

Die schleimigen Kolonien des Blaugrünen Bakteriums Nostoc, biologische Bodenkrusten und „Tintenstriche“ an Kalkfelsen sind möglicherweise solche terrestrischen bis heute überdauernde Lebengemeinschaften der Früherde (Abb. 6)., ebenso die Biokrusten, die sich auf offenen Sandbödn bilden können.

Als Biofilme bezeichnet man Schleimschichten, die eine Mischung aus Mikroorganismen (Bakterien, Archäen, Algen, Pilze, Einzeller) bestehen (Abb. 7, 8).

Abb. 7 Initialstadium eines Biofilms. Frei lebende Bakterien setzen sich fest, werfen ihre Geißeln ab und sondern Schleim ab (Grafik W. Probst)

Sie können auch einige mehrzeiligen Organismen (Rädertierchen, Fadenwürmer, Milben) enthalten, die sich von den Mikroben ernähren. Die Schleimbeläge bilden sich an Oberflächen und Grenzflächen, sowohl an Übergängen von flüssigen zu gasförmigen als auch von festen zu flüssigen Substraten. In weiterer Fassung kann man darunter auch mit Mikroorganismen angereicherte Schleimklümpchen in Flüssigkeiten verstehen. Die Schleimstoffe werden von den Lebewesen, vorwiegend von den Bakterien und Archäen, abgeschieden. Die sogenannten extrazellulären polymeren Substanzen (EPS) bestehen aus Polysacchariden, Proteinen, Lipiden und Nukleinsäuren. Sie  können sehr viel Wasser binden und Hydrogele bilden, in denen Nähr- und Mineralstoffe gelöst sind. Neben verschiedenen organischen und anorganischen Partikeln können auch Gasblasen eingeschlossen werden. In einem Biofilm können in geringen Abständen sauerstoffreiche und sauerstoffarme oder -freie  Bereiche liegen, die dann jeweils von aeroben bzw. anaeroben Mikroorganismen besiedelt werden. Die Oberflächen der Filme können ebenfalls sehr unterschiedlich gestaltet sein. Teilweise siedeln sich dort in das umgebende Wasser hineinragende Organismen (zum Beispiel Glockentierchen) an, teilweise bilden sich Ausbuchtungen, Poren oder Höhlen, die den Stoffaustausch erleichtern. An der Grenzschicht können Teile des Biofilms abreißen vom vorbeiströmenden Wasser weiterverbreitet werden und im Wasser Schleimflocken bilden.

Abb. 8 Entwicklung und Alterung eines Biofilms (Grafik W. Probst)

Voraussetzung für die Bildung eines Biofilmes ist, dass sich die Mikroben an einer Oberfläche festsetzen können. Dabei verändern sich die Organismen. Bei Bakterien ist es häufig mit dem Verlust der Flagellen und dem Abscheiden von Polymeren verbunden. In Biofilmen gibt es zwischen den einzelnen Mikrobenzellen einen Signalaustausch, der dafür sorgt, dass Zellteilung und Wachstum reguliert ablaufen. Dadurch wird Mangelernährung und Zusammenbruch des Systems vermieden (Quorum Sensing). Als Kommunikationsfaktor ist z. B. bei Bacillus subtilis die Abgabe von K+-Ionen nachgewiesen. Auch ein altruistischer Nährstoffaustausch von gut versorgten Mikroben zu „unterernährten“ Mikroben ist nachgewiesen.

Durch horizontalen Gentransfer können die Organismen in einem Biofilm gegenseitig ihre Genausstattung verbessern und zum Beispiel Gene weitergeben, die sie zur energetischen Nutzung bestimmter Substrate befähigen oder sie gegen Gifte resistent machen. In der Endphase der Biofilmentwicklung kommt es dann, ebenfalls durch Signalstoffe verursacht, zur Abgabe von begeißelten Formen und zur Sporenbildung. Auch abgerissene Biofilm-Flocken dienen der Ausbreitung, denn sie können sich leicht an neuen Oberflächen festsetzen und weiter wachsen.

All diese besonderen Formen der Kooperation und Vehrmehrung lassen Biofilme als Superorganismen erscheinen, in denen sich verschiedene Prokaryoten über extrazelluläre Matrices aus Makromolekülen verbinden und  ihre Stoffwechselaktivitäten sehr effektiv aufeinander abstimmen können. Schon kurz nach der Entstehung des Lebens und lange vor echter Vielzelligkeit entwickelte sich so eine höhere Organisationsebene des Lebens mit echter Differenzierung der verschiedenen beteiligten Einzelzellen (vgl. Margulis 1997).

Biofilme sind sehr weit verbreitet, in allen Böden, auf Sand, auf Gesteinen auf und in Pflanzen und Tieren, in heißen Quellen und auf dem Gletschereis, in technischen Geräten, Rohren und Röhrchen, Tanks und U-Booten. Wüstenkrusten zum Beispiel sind die ersten Biozönosen lockerer Wüsten-Sandböden. Sie bestehen aus Bakterien, Algen, Pilzen und schließlich auch Flechten und Moosen. Die von den Mikroben abgegebenen Kohlenhydrate bilden nicht nur eine Matrix für die verschiedenen Lebewesen, sie verkleben auch die anorganischen Substratpartikel. Diese Krustenbildung verhindert Winderosion, fördert Wasserabsorbtion selbst aus Tau oder Nebel und führt über Luftstickstoff-Fixierung sogar zu einer Anreicherung lebenswichtiger Stickstoffverbindungen. Auch für Wattboden-Oberflächen sind Biofilme charakteristisch. Hier spielen neben Blaugrünen Bakterien Diatomeen (Kieselalgen) eine wichtige Rolle. Auch hier kommt es durch ausgeschiedene Polysaccharide zur Krustenbildung („Wattpapier“).

Besondere Biofilm-Gemeinschaften finden sich auf den Häuten und Schleimhäuten von Tieren und als Zahnbelag. Die große Bedeutung dieses Mikrobioms, das an Zellenanzahl häufig die Zellenzahl ihres Trägertieres übertrifft, wurde erst in den letzten Jahrzehnten erkannt und ist immer noch ein zentrales Forschungsthema.

Dies gilt auch für die klinische Bedeutung von Biofilmen. Trotz ihrer weiten Verbreitung wurde ihre Gefahr in der Medizin lange Zeit unterschätzt. Dabei schützen sich etwa 60 % aller mikrobiellen Krankheitserreger durch Biofilmbildung vor dem Immunsystem (Fux et al. 2005). Die Ablösung von Bakterienflocken aus Biofilmen kann zur Quelle chronisch wiederkehrender Infektionen werden, besonders bei Patienten mit geschwächtem Immunsystem. Dies betrifft zum Beispiel Krankheiten wie Blasenentzündungen, Parodontose, chronische Mittelohrentzündung oder chronische Lyme-Borreliose. Auch Biofilmbildungen auf medizinischen Instrumenten, Kathetern und chirurgischen Implantaten können der Ausgangspunkt von Infektionen sein. In sehr vielen chronischen Wunden lassen sich Biofilme nachweisen.

An technischen Konstruktionen aus Metall können Biofilme Korrosion hervorrufen. Auch Luftbefeuchter und Verdunstungskühlanlagen sind besonders anfällig für Biofilmbildungen.

Die schleimigen Mikrobengemeinschaften können aber auch sinnvoll genutzt werden, zum Beispiel in der biologischen Abwasserreinigung oder bei der mikrobiellen Laugung von Erzen (selektive Anreicherung bestimmter Mineralien). Selbst Bodenschadstoffe wie Mineralölrückstände können durch entsprechende Mikroorganismen-Gemeinchaften abgebaut werden.

Eine wichtige Nutzanwendung sind die Biofilme aus lebenden Essigbakterien zur Herstellung von Essig aus Ethanol (Essigmutter) oder das schleimige Konglomerat aus Essigbakterien und Hefepilzen („Teepilz“), mit dem sich gesüßter Schwarztee in den Kombuchatrank (Teekwaß) umwandeln lässt.

Kombucha – das Geheimnis eines Zaubertrankes

Abb. 9 Teepilz (Kombucha) – aus einem ebay-Angebot von ilja.g94 (11.2021)

„Wenn sie nach einem Mittel mit fast magischen Kräften suchen, das Sie stimulieren und verjüngen kann, so gibt es keine Möglichkeit, die Sie näher an Ihr Ziel bringt, als der Kombuchapilz-Tee. Wir machen Ihnen diese Versprechungen, und wenn Sie nicht hundertprozentig befriedigt von dem herrlich schmeckenden Tee und dem von ihm bewirkten gesundheitlichen Segnungen sind, werden wir Ihnen alle Auslagen einschließlich der Transportkosten zurück erstatten!“

Mit diesem einleitenden Satz wird von einem Anbieter von Kombucha-Tee im Inter­net geworben.

Der Glaube an Wunder wirkende „Allheilmittel“ ist wahrscheinlich so alt wie die Menschheit. Als eine solche Wunderdroge wird der Tee“pilz“ oder Kombucha immer wieder benannt und angeboten. Ähnlich wie bei Kefirknollen han­delt es sich dabei um eine enge Gemeinschaft von Bakterien und Hefepilzen. In die­sem Falle gewinnen Sie Ihre Lebensenergie vor allem aus dem Abbau des im ge­süßten Tee reichlich enthaltenen Rohrzuckers. Dabei werden auch andere Inhalts­stoffe der Teeflüssigkeit genutzt und im Stoffwechsel verarbeitet. Als Endprodukte entstehen nicht nur Kohlenstoffdioxid und verschiedene Karbonsäuren (vor allem Essigsäure, Milchsäure, Ethanol,Gluconsäure und Glucuronsäure), im Kombuchatrank konnten auch Aminosäuren, Usninsäure, die Vitamine B1, B2, B3, B6, B12, Folsäure sowie Vitamin C nachgewiesen werden.

Der sogenannte Pilz ist in biologischem Sinne natürlich kein Pilz. Er besteht aus einer gallertigen Masse aus Polysacchariden, vorwiegend Zellulose, die als Matrix für verschiedene Hefearten und Bakterien dient (Abb. 11 ). Dieses schleimige Aggregat kann Tochteraggregate bilden oder durch Teilung vermehrt werden. Ähnliche Mikrobengemeinschaften sind verhältnismäßig weit verbreitet, ja, sie dürften eine ganz charakteristische Lebensweise von Mikroorganismen, insbesondere von Prokaryoten, Hefen und Schimmelpilzen darstellen. Für die menschliche Ernährung genutzt, werden sie z.B. auch als „Essigmutter“, als Kefir oder als Wasser­kefir.

Die „Teepilz-Sym­biose“ ist zunächst ein farbloses, fast völlig transparentes Schleimklümpchen. Bei Temperaturen zwischen 12 und 30 °C (Vorzugstemperatur: 23-27 °) und genügendem Sauerstoffzutritt wächst ein sol­ches Klümpchen in mit Zucker gesüßtem Tee zu einem weißlich durchscheinenden Ge­bilde unregelmäßiger Form mit schleimigem Äußeren heran. Bei weiterem Wachstum flacht es sich ab und nimmt schließlich die ganze Oberfläche des Gefäßes ein. Wenn die gesamte Flüssigkeitsoberfläche vom „Teepilz“ bedeckt ist, wächst der hellgrau durch­schimmernde Schirm verstärkt in die dritte Dimension und die Bezeichnung Bio“film“ passt dann eigentlich nicht mehr. Aus dem scheibenförmigen Gebildet wachsen lamellenähnliche Strukturen nach unten in die Kulturflüssigkeit. Mit der Zeit sinkt das ganze Aggregat tiefer in die Flüssigkeit ein. Unter Bei­behaltung der schleimigen Oberfläche nimmt es dabei eine immer dunklere, bräunlich-hellgraue Farbe an und wird außerordentlich zäh. Wenn die äußeren Bedingungen ungünstig werden, wenn z.B. in der Kulturlösung kein Zucker mehr enthalten ist, kann das Aggregat seine „Zusammenarbeit“ beenden und sich auflösen. Ein solcher Vorgang kann mit dem Sterben eines vielzelligen Organismus verglichen werden (vgl. Margulis 1997). Die einzelnen Mikroorganismen – Hefezellen und Bakterienzellen – müssen dabei nicht absterben. Isoliert sind sie jedoch nicht zu den gleichen Stoffwechselleistungen in der Lage wie im Verband. Wohl aber können sie unter günstigen Umweltbedingungen wieder zu einem neuen Verband zusammen treten. So gesehen ist eine Analogie zu den Keimzellen vielzelliger Organismen gegeben.

Abb. 10 Teepilz – Mikroskopische Aufnahme eines Schleimklümpchens mit Bakterien- und Hefezellen, ca. 400x (Foto W.Probst 2002)

Im Gegensatz etwa zur Flechtensymbiose, bei der es sich bei jeder „Flechtenart“ um eine ganz dezidierte Kombination einer oder weniger bestimmter Pilz- und Algenarten handelt, ist die Zusammensetzung des Kombuchaaggregates variabel. Auch das Kulturmedium hat Einfluss auf diese Zusammensetzung und damit auch auf die abgegebenen Stoffwechselprodukte und die Inhaltsstoffe  des Kombucha-Getränkes. Mit dem Kombuchatrank nimmt man jedoch immer neben den organischen Säuren, unter denen vor allem die Gluconsäure und die Glucuronsäure sich förderlich auf die Entgiftungsprozesse in der Leber auswirken sollen, auch lebende Hefe- und Bakterienzellen auf. Soweit sie verdaut werden, können daraus Vitamine z.B. der B-Gruppe freigesetzt werden. Wenn sie lebend in den Dünndarm gelangen, können sie sich günstig auf die Zusammensetzung und Wirkung der Darmflora auswirken. Gesundheitsfördernde und heilende Wirkungen sind damit vor allem im Zusammenhang mit einem starken Glauben durchaus möglich. Schädliche Wirkungen jedenfalls braucht man bei dem Genuss von Kombucha nicht zu befürchten, soweit das Getränk mäßig eingenommen wird. Bei einer mäßigen Dosierung dürfte der geringe Alkoholgehalt auch für Kinder nicht schädlich sein. Dasselbe gilt für den Säuregehalt. Im Gegenteil: Man kann sagen, dass das regelmäßige Vorhandensein von Essigsäurebakterien dafür sorgt, dass durch den niederen pH-Wert gefährliche Mikroben in dem Kombuchaaggregat kaum Fuß fassen können.

Der Kombuchatrank soll in China schon vor 2000 Jahren bekannt gewesen sein. Den Namen Kombucha führt man auf  die japanische Bezeichnung für Tee „Cha“ und für einen ebenfalls für Teezubereitung, Salate und Gemüse verwendeten Tang „Conbu“(Laminaria japonica) zurück. Außer in Ostasien hat der Teepilz und das mit seiner Hilfe gewonnene Gärgetränk  auch in Russland eine lange Tradition. Dies schlägt sich in Namen wie Teekwass, Kargasok-Teepilz, Fungojapon, Chinesischer Teepilz,  Japanischer Teepilz , Mandschurischer Pilz, Russische Blume, Russische Qualle, oder Wolgameduse nieder. Die sagenhaften Heilwirkungen des Getränkes werden durch Namen wie Heldenpilz, Champignon de la Charité oder Champignon de Longue Vie beschrieben.

Wissenschaftliche Untersuchungen des „Teepilzes“ begannen erst im 20. Jahrhundert. 1913 beschrieb Lindau in den Berichten der Deutschen Botanischen Gesellschaft über eine Teepilzkultur, die er von einem Herrn Dr. Gisevius aus dem Kurland erhalten hatte (Medusomyces gisevii Lindau). Bei der mikroskopischen Untersuchung  konnte Lindau  nur Hefepilze erkennen und so beschrieb er das Gebilde als „Medu­somyces Gisevii nov. spec. et  nov.gen.“ Noch im selben Jahr konnte der Botanikprofessor Lindner nachweisen, dass der Teepilz keine eigene Art ist, sondern vielmehr  aus einem Konglomerat verschiedener Bakterien- und Hefe-Arten gebildet wird. Als bakteriellen Hauptbestandteil isolierte er das Schleim-Essigbakterium Acetobacter xylinum und der wichtigste pilzliche Organis­mus konnte von ihm als der auch aus dem afrikanischen Hirsebier („Pombe“) bekannte Hefepilz Schi­zosaccharomyces pombe bestimmt werden. Weitere Hefepilze der Gattungen Torula, Torulopsis, Pichia, Candida, Saccharomycodes und Mycoderma konnte nachgewiesen werden. In den Jahren nach dem ersten Weltkrieg brachten aus Russland zurückkehrende Kriegsgefangene Teepilzkultu­ren mit. Die Herstellung des Teekwass wurde auch in Deutschland bekannt. In den 20er und 30er Jahren wurden erste wissenschaftliche Untersuchungen über die Stoffwech­selleistungen der Teepilz-Symbiose durchgeführt. Dabei konnten im Teekwass  Milchsäure, Essigsäure, Ethanol und auch Gluconsäure nachgewiesen werden. In einer neueren Untersuchung stellte Reiß ( 1987) die quantitative Zusammensetzung der Teepilz-Gärungsprodukte fest. Er konnte auch zeigen, dass das verwendete Substrat (Schwarztee bzw. Lindenblüten-, Pfefferminztee, Colagetränk und Bier) Einfluss auf die Zusammensetzung der Gärungsprodukte hat.

Unter natürlichen Bedingungen dürften ähnliche Mikrobenaggregate vermutlich überall dort vorkommen, wo zuckerhaltige Pflanzensäfte in größeren Mengen auftreten. Vor allem dürfte dies der Blutungssaft von Bäumen und anderen verletzten Gewächsen sein, eventuell auch Blüten mit reichlicher Nektarproduktion oder süße, große Früchte.

In der Literatur wird beschrieben, dass „Teepilze“ auch technisch genutzt wurden (Lindner 1917/ 1918 und Lakowitz 1928 nach Meixner 1983). Man ließ die Aggregate  meterdick und zentnerschwer werden und nutzte sie zur Herstellung von Handschuhleder und für Gasballonhüllen.

Sukkulente

Eine mögliche Anpassung von Pflanzen an trockene Standorte ist die Sukkulenz: Blätter oder Sprossachsen, seltener auch Wurzeln, können stark verdickt sein und ein sehr wasserhaltiges Gewebe aus großlumigen Zellen enthalten. Der Zellsaft weist meist eine schleimige Konsistenz auf, die vor allem von Polysaccharideden aus Glucose, Mannose, Galactose und Xylose sowie Aminosäuren und Carbonsäuren zustande kommt. Das Gel dient nicht nur der Wasserspeicherung sondern auch einer besonderen Form der Photosynthese, der CAM-Photosynthese (von Crassulacean Acid Metabolismus). Diese sukkulenten Pflanzen öffnen nachts ihre Spaltöffnungen und speichern CO2 in organischen Säuren, zum Beispiel Äpfelsäure. Tagsüber bleiben die Spalten geschlossen und das CO2 aus den Carbonsäuren wird freigesetzt und für die Photosynthese verwendet. Dadurch kann der Wasserverlust durch Transpiration stark eingeschränkt werden.

Abb. 11 Aloe aristata-Blatt mit schleimigem Inhalt (Foto W. Probst 2021)

Sukkulente kommen in vielen verschiedenen Pflanzenfamilien vor. Besonders bekannt sind Kakteen und Kakteen-ähnliche Euphorbien oder die Dickblattgewächse (Crassulaceae), deren Name schon auf ihr Blattsukkulenz hinweist. Auch bei den Lilienverwandten gibt es viele Blattsukkulente, zum Beispiel die Agaven und die Aloe-Arten. Besonders berühmt für ihren Blattschleim ist die Echte Aloe (Aloe vera). Die Pflanze wird seit dem Altertum medizinisch genutzt und gilt bis heute als medizinisches Wundermittel. Im Internet finden sich zahlreiche Angebote, die das Pflanzengel nicht nur zur äußerlichen Anwendung gegen Verbrennungen, Sonnenbrand, Mückenstiche, Ekzeme, Geschwüre, unreine Haut und Entzündungen aller Art empfehlen, sondern auch zur inneren Anwendung bei Husten, Sodbrennen, Diabetes, Allergien und Reizmagen bzw. Reizdarm. Entsprechend groß ist die Palette der Aloe-vera-Produkte.

Abb. 12 Aloe-Schleim (Foto W.Probst 2021)

Wie bei allen Wundermitteln und Allheilmittel ist auch hier Vorsicht geboten. Medizinische eindeutige Nachweise für die vielseitigen Heilwirkung gibt es nicht. Eine Verwendung des Gels bei zu trockener Haut kann sicherlich nicht schaden und zumindest die kühlende, Juckreiz stillende Wirkung bei Insektenstichen gilt auch als gesichert. Bei der innerlichen Anwendung ist Vorsicht geboten, denn der in den äußeren Blattgeweben enthaltene gelbliche Saft enthält Aloin, ein Stoff aus der Gruppe der 1,8-Dihydrohxyanthracene. Der bitter schmeckende Stoff ist möglicherweise krebserregend außerdem stark abführend.

Drosseln, die sich selber schaden

Turdus sibi ipse malum cacat“ (Die Drossel scheißt sich ihr eigenes Verderben) Römisches  Sprichwort

In alten Streuobstwiesen kann man Apfelbäume finden, die im Winter so grün sind wie Immergrüne. Auch Pappeln und Birken können sehr dicht mit Misteln (Viscum album) besetzt sein. Diese immergrünen Pflanzen wachsen nicht nur auf sondern auch in ihren Wirtsbäumen. Sie treiben ihre Wurzeln bis in das Holz ihrer Wirte und zapfen deren Wasserleitungsbahnen an. So gewinnen sie Wasser und Mineralstoffe, für die Produktion von Kohlenhydraten sorgt ihr eigener Fotosyntheseapparat in den grünen Blättern (Abb. 13).

Abb. 13 Misteln (Viscum album) auf Schwarz-Pappeln, Eriskircher Ried, 19.4.2014 (Foto W. Probst)

Misteln sind zweihäusig, d. h., eine Mistelpflanze trägt immer nur männliche oder weibliche Blüten. Allerdings können Misteln auch auf Misteln parasitieren. Wenn Parasit und Wirt unterschiedlichen Geschlechts sind, entsteht so der Eindruck einer einhäusigen Pflanze.

Abb. 14 Mistelpflanze (Viscum album) an Birke. Dank ihrer streng dichotomen Verzweigungen haben ältere Mistelpflanzen eine nahezu perfekte Kugelform (Foto W. Probst, 2016)

Geringer Mistelbesatz schadet einem Baum wenig. Aber sehr viele Misteln können dazu führen, dass der Wirtsbaum – vor allem bei niedrigen Temperaturen im Winter, wenn die Wasseraufnahme eingeschränkt ist – vertrocknet. Das ist dann allerdings auch das Ende seiner grünen Parasiten, aber diese haben sich in der Zwischenzeit schon stark vermehrt. Denn die Misteln haben eine sehr effektive Form der Samenverbreitung. In ihren weißen Beerenfrüchten ist normalerweise ein Same enthalten. Er ist eingebettet in einen zähen Schleim (Abb. 16). Die Früchte reifen im Spätherbst und bleiben bis zum Frühjahr, manchmal sogar bis zum Frühsommer erhalten. Die Beeren werden sehr gerne von Drosseln, vor allem von den danach benannten Mistel-Drosseln, gefressen. Die Samen werden aber nicht verdaut. Sie werden von den Drosseln wieder ausgeschieden, und auch ein Teil des zähen Schleims überlebt die Darmpassage. Solche ausgeschiedenen Mistelsamen mit Schleimfäden kann man bei genauer Beobachtung nicht selten an Ästen von Bäumen finden. Dieser biologische Zusammenhang war schon den Römern bekannt. Außerdem waren Drosseln schon im alten Rom eine beliebte Delikatesse und sie wurden mit Vogelleim gefangen, den man aus Mistelbeeren herstellte (meist allerdings aus der Eichenmistel Loranthus europaeus, die in Deutschland nur an wenigen Stellen vorkommt. Daher das römische Sprichwort).

Abb. 15 Mistelfrucht (Foto W. Probst 2016)

Kleinere Vögel wie Meisen fressen nur den äußeren, weniger klebrigen Teil des Fruchtfleischs und streifen den Samen mit seinem klebrigen Mantel an den Zweigen ab. In beiden Fällen werden die Samen so durch die Vögel an Zweige und Äste von Bäumen geklebt.

Im Übrigen war die Mistel schon in der Antike eine verehrte Heilpflanze, nicht nur bei Griechen und Römern, sondern auch bei Kelten (für Asterix-Fans: ein wichtiger Bestandteil des Zaubertrankes des Druiden Mirakulix). Die Verehrung spiegelt sich bis heute in dem vor allem in angelsächsischen Ländern beheimateten Brauch wieder, grüne Mistelzweige zu Weihnachten ins Zimmer zu hängen. Dass man sich unter solchen in Wohnungen aufgehängten Mistelzweigen küsst bzw. küssen darf, gehört in England und den Vereinigten Staaten zu den Weihnachtsbräuchen und hat seinen Ursprung vermutlich in heidnischer Vorzeit. In der modernen Heilkunde spielen vor allem die Mistellektine als mögliche Tumorhemmer und Stimulatoren des Immunsystems eine gewisse Rolle. Lektine sind Proteine oder Glykoproteine, die sich spezifisch mit Zellmembranen verbinden können und von dort biochemische Reaktionen auslösen.

Abb. 16 Der Schleim in der Mistelfrucht (Fotos W. Probst)

Früchte oder Samen, die klebrigen Schleim für ihre Verbreitung nutzen, kennt man auch von anderen Pflanzen. Ein gutes Beispiel sind die Früchte der Wegerich Pflanzen. Die meisten Pflanzen mögen es nicht so gerne, wenn man auf ihnen herum trampelt, nicht so – wie schon der Name sagt – die Wegeriche. Sie gedeihen gerade an solchen Stellen, an denen Konkurrenten durch Vertritt ausgeschaltet werden. Besonders trifft dies in unserer heimischen Flora auf den Breit-Wegerich zu. Man findet ihn fast nur auf Wegen oder anderen häufig begangenen und befahrenen Stellen.

Abb. 17 Gequollene Samen des Breit-Wegerichs (Plantago major) in wässriger Methylenblau-Lösung. Die Schleimhüllen nehmen die Farblöung nicht so schnell auf. (Foto W. Probst 2010)

Ab Juli kann man seine Früchte finden. Es sind Kapseln, die sich an langen Ähren entwickeln. Wenn sie reif sind, löst sich ein Deckel ab und die Samen werden ausgestreut. Die Samen sind von einer Klebschicht umgeben, die allerdings erst klebt wenn sie nass wird – ähnlich wie der Kleber auf der Rückseite einer Briefmarke. In diesem Zustand hat sie ausgezeichnet an Hufen aber auch an Schuhen. Das ist ein Grund dafür, dass der Breit-Wegerich heute auf der ganzen Erde anzutreffen ist. Nach der Besiedelung durch weiße Siedler kam die Pflanze auch nach Nordamerika. Wo die Siedler mit ihren Planwagen und Tieren ihre breiten Spuren hinterlassen hatten, breitete sich die vertrittfeste Pflanze aus und weitere Siedlerkarawanen schadeten ihr nicht. Den Indianern galt diese Pflanze bald als Zeichen der Kolonisten und sie nannten sie „Fußspur des weißen Mannes“ (Abb. 18).

Abb. 18 Breit-Wegerich in Pflasterfuge (Foto W. Probst 2019)

Schleimige Samen werden vom Menschen traditionell in Heilkunde und Medizin genutzt. „Flohsamen“ werden aus den Samenschalen der Wegerich Arten Plantago indica  und Plantago  afra hergestellt und dienen wegen ihrer wasserbindenden Eigenschaften der Verdauungsregulation. Sie werden sowohl bei Verstopfung als auch bei Durchfall eingesetzt. Leinsamen sind ein altbekanntes Mittel gegen Verstopfung. Eine ganz hippe neue Schleimspeise sind Chia-Samen (von der mexikanischen Salvia hispanica), die zum Beispiel als Brotzusatz oder in Müsli-und Joghurtspeisen Leinsamen mittlerweile an Popularität übertreffen. Auch die traditionelle Krankenmahlzeit „Schleimsuppe“ aus Haferflocken erhält ihre schleimige Konsistenz aus den Schleimstoffen der zu Flocken gewalzten Haferkörner.

Schneckenschleim

Abb. 19 Spanische Wegschnecken (Arion vulgaris) bei der Paarung (Foto W. Probst 9.2000)

Schneckenschleim ist zäh und klebrig. Besonders haftstark ist der Schleim der Spanischen Wegschnecke. Das erfährt man, wenn man ein solches Schneckentier mit der Hand von Pflanzen absammelt. Der Reiz stimuliert die Nacktschnecke zur Schleimproduktion. Dieser Schleim ist nicht nur besonders zäh, er enthält auch Bitterstoffe. Natürliche Schneckenfresser wie Kröten und Igel halten sich deshalb bei Spanischen Wegschneckten zurück. Gartenbesitzern sind diese Schnecken ein Graus, denn sie können besonders in feuchten Sommern in solchen Massen auftreten, dass man kaum eine Chance hat, ein Gemüsebeet anzulegen, da alle Setzlinge oder Keimlinge sofort abgefressen werden. Salatpflanzen, Zucchini und Kohlrabi werden ebenso vertilgt  wie Basilikum und Rucola oder Zierpflanzen, vor allem Lilienverwandte.

Mit ihrer Raspelzunge können die Schnecken nicht nur Pflanzenblätter im Nu klein raspeln, sie vertilgen alle möglichen Arten von organischem Abfall und sie schrecken auch vor Kannibalismus nicht zurück. Um ihre Pflanzen zu schützen, gehen Gartenbesitzer mit Messern, Scheren, Salz oder Fallen auf Schneckenjagd. Das giftige Schneckenkorn wirkt anziehend auf Schnecken und führt bei Verzehr zu einem schleimigen Tod. Da der enthaltene Wirkstoff Methiocarp ein gefährliches Nervengift ist, dass nicht nur alle Arten von Schnecken tötet, sondern auch für andere Tiere und für den Menschen gefährlich werden kann, wurde seine Zulassung als Molluskizid in der EU im Oktober 2013 und generell 2019 zurückgenommen.

Die reizabhängige Schleimproduktion der Spanischen Wegschnecken wird seit einiger Zeit genutzt um medizinische Produkte zu testen, die für Schleimhäute – zum Beispiel bei Augenuntersuchungen – eingesetzt werden sollen. Die Wegschnecke dient als Tiermodell, um chemische Substanzen auf ihre Verträglichkeit zu untersuchen. Je mehr Schleim abgegeben wird, desto stärker ist der Reiz.

Daran kann man schon erkennen, dass der Schleim der Schnecken eine Schutzfunktion hat. Er hält Fressfeinde ab, aber er enthält auch bakterizide und fungizide Wirkstoffe. Für die kriechende Fortbewegung hat er eine wichtige Funktion, indem er als Gleit-und Haftmittel wirkt: Im Ruhezustand ist das Schleimgel ziemlich fest und klebrig. Wirken Scherkräfte ein, geht es in einen flüssigeren, gleitfähigen Zustand über. Dadurch kann die Schnecke durch die Muskelbewegungen die physikalischen Eigenschaften dieses Schleims nach ihrem Bedarf variieren. Die wellenförmig von vorne nach hinten über die Unterseite laufenden Muskelkontraktionen ermöglichen eine gleitende Fortbewegung. Allerdings bleibt dabei immer eine gewisse Schleimmenge am Untergrund haften, weshalb ständig Schleim nachproduziert werden muss. Das bedeutet einen ziemlichen Material- und Energieaufwand und vor allem einen großen Flüssigkeitsbedarf: Wird es zu trocken, „geht den Schnecken der Schleim aus“.

Wichtiger Bestandteil des Schneckenschleims sind die Faserproteine Kollagen und Elastin. Kollagen besteht aus drei umeinander gewundenen Polypeptidketten und kommt bei allen Stämmen der vielzelligen Tiere vor, Elastin bildet ein Netzwerk aus Proteinfäden die über die Aminosäure Lysin vernetzt sind. Im Gegensatz zu Kollagen ist Elastin dehnbar. Beide Stoffe kommen auch im Bindegewebe der Wirbeltiere vor und sie sind für eine straffe, faltenfreie Haut verantwortlich. Die äußerliche und innerliche Anwendung von Schneckenschleim als Schönheits- und Anti-Aging-Mittel hat deshalb Konjunktur.

Spitzen-Schleimer: Die Schleimaale

Abb. 19 Atlantischer Schleimaal (Myxine glutinosa) (Grafik W. Probst 2021)

„Es wimmelten dort in krausen Gemisch, zu hässlichen Klumpen geballt“ die Schleimaale, so könnte man mit einer Verszeile aus Schillers Taucher die Lebensumstände der atlantischen Neunaugenverwandten Myxine glutinosa beschreiben. Die fischähnlichen Lebewesen mit aalförmigen Körper aus der Gruppe der Kieferlosen (Agnatha) haben ihr Erscheinungsbild in den letzten 300 Millionen Jahren kaum verändert. So gesehen sind sie ein Erfolgsmodell der Evolution.

Lange Zeit galten Schleimaale oder Inger – es sind rund 80 Arten beschrieben –  als Schädlinge, vor allem für die Grundnetzfischerei. Sie fressen die gefangenen Fische an und machen den Fang dadurch unbrauchbar. Andererseits spielen sie im Ökosystem der Tiefsee eine wichtige Rolle bei der Aufbereitung von Abfallstoffen, vor allem großer Kadaver. Sie wurden deshalb als „Totengräber der Tiefsee“ bezeichnet. Wirtschaftliche Bedeutung hat seit einiger Zeit die Haut der Schleimaale, da sie zur Lederherstellung verwendet („Aalleder“) werden kann. In Ostasien werden Schleimaale auch als Speisefisch genutzt. Vor allem im  Westen der USA wird Aalleder in größerer Menge produziert. Die Schleimaale werden von LKWs zu den Lederproduktionsstätten gefahren. So kam es wohl 2017 in Oregon zu einem Verkehrsunfall mit einem solchen Schleimaal-Transporter, bei dem 3,4 t dieser Tiere auf die Straße gerieten und alles mit ihrem Schleim überzogen. Von ProSieben wurde ein Video dieses Unfalls in der Hoffnung auf Werbeeinnahmen ins Netz gestellt , auch in National Geographic wurde der Unfall beschrieben.

Walkadaver in der Tiefsee mit Schleimaalen (Grafik W. Probst 2021)

Der Schleimaal-Schleim ist ein ganz besonderer Glibber und deshalb ist er in den Fokus der Wissenschaft geraten. Einmalig ist seine extrem hohe Wasserspeicherfähigkeit. In gequollenem Zustand bestehen nur 0,004 Gewichts% des Schleims aus Proteinen und Polysacchariden, der Rest ist Wasser. Eine weitere Besonderheit ist, dass er nicht nur Mucine sondern 15-30 cm lange Proteinfäden enthält, die Ähnlichkeiten mit der Spinnenseide aufweisen und wie diese eine extrem hohe Reißfestigkeit besitzen. Produziert werden diese beiden Schleimbestandteile in speziellen Drüsen in zwei verschiedenen Zelltypen, die entweder den Proteinfaden oder das Mucin produzieren. Über Poren werden diese beiden Bestandteile gleichzeitig ins Wasser ausgestoßen, mit dem sie sofort interagieren und zu gewaltigen Schleimmassen aufquellen. Potenzielle Anwendungsgebiete wären zum Beispiel neue, biologisch abbaubare Polymere, Gele als Füllmaterial und Mittel, um Blutungen bei Unfallopfern und Chirurgie-Patienten zu stoppen. Die Hoffnung, den Schleim exakt nachbilden zu können, sind bis jetzt allerdings gering, da seine genaue Zusammensetzung und Bildung sehr komplex erscheinen. Aber eventuell könnte das Prinzip nachgebildet werden und dann Stoffe ergeben, die ähnliche Eigenschaften haben.

Eine weitere Besonderheit des Schleimaals ist erwähnenswert: Nachdem er sich durch Schleimausstoß seine Gegner vom Hals gehalten hat, besteht für ihn nun das Problem, seinen eigenen Schleim wieder loszuwerden. Dabei nützt ihm seine große Beweglichkeit und Biegsamkeit: Er kann in seinen Schlangenleib einen Knoten machen, diesen lässt er dann langsam vom Schwanz bis zum Kopf wandern und streift damit den Schleim ab.

Schleimhäute

Abb. 21 Aufbau der menschlichen Mundschleimhaut (Grafik W. Probst 2021)

In der Medizin werden als „Schleimhäute“ die Schutzschichten bezeichnet, die innere Organe auskleiden, zum Beispiel die Verdauungsorgane, die Atmungsorgane und die Geschlechtsorgane. Im Gegensatz zur äußeren Haut besitzen Schleimhäute fast keine Hornschicht und keine Haare dafür meist Schleimdrüsen oder einzelne Zellen, die Schleim abgeben also Mucine produzieren. Sie sind aufgebaut aus einer ein-oder mehrzelligen Epithelzellenschicht, einer Bindegewebsschicht und teilweise auch noch einer Muskelschicht. Die Epithelzellen können zur Oberflächenvergrößerung kleine Ausstülpungen (Mikrovilli) tragen oder auch mit Cilien besetzt sein (Wimpernepithel). Durch die enge Verbindung mit dem Lymphsystem haben Schleimhäute eine wichtige Schutzfunktion gegen eindringende Krankheitserreger.

Der Mundspeichel wird in unterschiedlicher Zähigkeit von kleinen Speicheldrüsen in der Mundschleimhaut und von den großen Speicheldrüsen Ohrspeicheldrüse, Unterzungendrüse und Unterkieferdrüse gebildet, bei einem erwachsenen Menschen am Tag im Durchschnitt etwa ½ L. Die schleimigen Bestandteile sind Mucine, außerdem enthält der Mundspeichel das Kohlenhydrate-Verdauungsenzym Ptyalin, Ca-,Na- K- und Cl-Ionen. Antikörper (Immunoglobulin A), Laktoferin, Lysenzym und Histatin Er wirkt antiseptisch und wundheilend, weshalb es sehr wirkungsvoll ist, seine Wunden zu lecken.

Aber auch Krankheitserreger können durch Speichel übertragen werden. Deshalb ist das Auf-den-Boden-Spucken zu vermeiden und in manchen Ländern verboten, anderenorts aber auch durchaus verbreitet, zum Beispiel in China und in Indien. Früher war das Spucken auch in Mitteleuropa üblich, auf Bahnhöfen wurden Spucknäpfe aufgestellt und in Zugabteilen fand man das Schild „Nicht auf dem Boden spucken!“

Das Ausspucken ist in Indien und Südostasien oft mit dem Kauen von Betel verbunden. Für einen als“Pan“ bezeichneten Betelbissen werden die kleingehackten Arekanüsse der Betelpalme (Areca catechu) mit Löschkalk in ein Blatt des Betelpfeffers (Piper betle) gewickelt, zur Abmilderung des bitteren Geschmacks werden meist einige Gewürze wie Pfefferminze oder Lakritze zugefügt. Die Mischung wird etwa eine Viertelstunde gekaut. Das führt zu einer starken Anregung des Speichelflusses und zu einer intensiven Rotfärbung des Speichels durch die in der Arekanuss enthaltenen Phlobatannine. Überflüssige Flüssigkeit wird ausgespuckt – auf dem Boden und an Wänden und Mauern kann man überall die roten Flecken erkennen. Die Wirkung der enthaltenen Alkaloide ist so ähnlich wie die von starkem Kaffee.

Ein verwandter Brauch ist das Kauen von Tabak. Beim Schnupftabak werden dagegen die Nasenschleimhäute zur Aufnahme des Nikotin genutzt. Das durch den Schnupftabak ausgelöste Niesen ist ein Teil des Genusses und ein großes Schnupftuch gehört dazu. Früher waren solche Stofftaschentücher auch für das Schneuzen bei normalem Erkältungsschnupfen sehr üblich und ein beliebtes Verlegenheitsgeschenk bei Geburtstagen. Erst durch den Siegeszug der Papiertücher sind die Stofftaschentücher zur Aufnahme des Nasenschleims weitgehend verschwunden.

Ein genetisch bedingte Schleimkrankheit ist die Mukoviszodose oder Cystische Fibrose (CF). Bei den Schleim absondernden Zellen funktionieren Chloridkanäle in der Zellmembran nicht mehr richtig, da in dem für das Zellkanal-Protein zuständigen Gen eine Mutation aufgetreten ist. Dadurch wird der osmotisch bedingte Wasseraustritt von den umgebenden Zellen in den abgesonderten Schleim gebremst und der Schleim bekommt eine sehr zähe Konsistenz. Dies betrifft nicht nur Nasenschleimhäute und Bronchien sondern auch Sekrete der Bauchspeicheldrüse, der Leber (Gallen), der inneren Geschlechtsorgane, der Speiseröhre, des Darms und der Schweißdrüsen. Die Folge sind Funktionsstörungen unterschiedlichster Art. Die Symptome der Krankheit zeigen sich bereits in der frühen Kindheit und die Krankheit ist unheilbar und führt meist über kurz oder lang zum Tode.

Bei Menschen liegt das mutierte Gen auf dem langen Arm von Chromosom 7. Bisher sind über 2000 verschiedene Mutationen dieses Gens bekannt, das auch CFTR-Gen genannt wird (Cystic Fibrosis Transmembran Conductance Regulator bezeichnet das transmembrane Kanalprotein). Die häufigste Mutation ist eine Punktmutation, die zu einem fehlen der Aminosäure Phenylalanin an Position 508 des CFTR-Proteins führt.

In Europa kommt auf 2000 Geburten ein Fall von Mukoviszidose. Die Krankheit wird autosomal rezessiv vererbt. Dank verbesserter Therapiemöglichkeiten hat sich die Überlebensrate von Mukoviszidose-Patienten in den letzten Jahrzehnten deutlich verbessert. Aus evolutionsbiologischer Sicht ist es verwunderlich, dass sich die krankheitserregenden Allele dieses Gens sich in so hoher Konzentration in der Population erhalten haben. Das kann man sich eigentlich nur durch einen Selektionsvorteil des heterozygoten Genotyps erklären. Möglicherweise besteht bei den Heterozygoten eine höhere Resistenz gegen Tuberkulose.

Neben der symptomatischen Behandlung wird seit einiger Zeit auch versucht, ein gesundes Gen in die Zellen einzubauen, dass dann für die Produktion eines funktionsfähigen CFTR-Proteins fungiert (Gentherapie). Bisher gibt es bei diesen Versuchen aber noch keine funktionierenden Ergebnisse. Eine weitere Möglichkeit wäre eine Behandlung mit entsprechender mRNA, die dann direkt an Ribosomen in die richtigen Proteine translatiert werden könnte. Auch hier liegen bisher (2021) noch keine positiven Ergebnisse vor.

Zum Schluss

Unser Weg auf biologischen Schleimspuren ist nun erst einmal zuende, aber natürlich wäre noch vieles zu entdecken, zum Beispiel

  • die schleimigen Netze der Myxogastria, die sich in Labyrinthen zurecht finden und die effektivsten Verbindungen zu verschiedenen Nahrungsquellen finden, und die deshalb sogar menschlichen Netzwerkplanern als Vorbild dienen;
  • der Schleim der Amphibien, der ihre fast unverhornte Haut vor Austrocknung schützt aber auch giftige Substanzen zur Feindabwehr einhalten kann und ihre Eier mit einer glibberigen Hülle umgibt;
  • die Bedeutung von Schleimstoffen bei der Fortpflanzung;
  • die verschiedenen Schleimstoffe in unseren Speisen, von Haferschleimsuppe und Chiamüsli, Remoulade und Hering in Aspik bis zu glibberigem Kaviar und schleimigen Austern.

Vielleicht haben Sie Lust auf weitere Entdeckungen? Die Internetslinks eröffnen einige Möglichkeiten.

Abb. 22 Grasfrosch mit Laich, 11.3.2017 (Foto W. Probst)

Quellen

Buslau, S.-J., Hembd, C. (1999): Kombucha. Das Gesundheitselexier aus China. München: Heyne

Flemming, H.-C. (2000):Biofilme – das Leben am Rande der Wasserphase. In: Nachrichten aus der Chemie 48 (4): 442 f, 2000

Flemming, H.-C., Wingender, J. (2001): Biofilme – die bevorzugte Lebensform der Bakte­rien. Biologie in unserer Zeit 31 (3): 169

Flemming, HC., Wingender, J., Szewzyk, U. et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14, 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94

Frank, G.W. (1999): Kombucha. Mythos, Wahrheit, Faszination. Styr (Österreich): Ennsthaler Verlag

Fux, C. A. et al. (2005): Survival strategies of infectious biofilms. Trends Microbiol. 13(1),34-40.

Haeckel, E. (1870): Beiträge zur Plastidentheorie. Jena: G. Fischer

https://www.laborpraxis.vogel.de/super-hydrogel-nach-natuerlichem-vorbild-a-518812/

Lange, O. L. Hrsg.(2013): Biological Soil Crusts: Structure, Function, and Management. Springer

Lem, S: Solaris 1961, Deutsch von I. Zimmermann-Göllheim. Berlin:Ullstein 2006

Lüttig, A., Kasten, J. (2003): Hagebutte & Co. Blüten, Früchte und Ausbreitung europäischer Pflanzen. Not drei Nahrungen Allweil mangelnden RES Januar zwei ja tuln: Fauna-Verlag

Margulis, L.( 1997): From Kefir to death. In: Margulis, L./Sagan, D.(1997): Slanted truths., New York: Copenicus-Springer, 83-90

Margulis, L., Sagan, D. (1986): Microcosmos. Four billion years of microbial evolution. Berkeley…:University of California Press

Mayser, P. u.a.: The yeast spectrum of the tea fungus Kombucha. Mycoses 38: 289-295, 1995

McLeish, T. (2020): Soft matter. A very short introduction. Oxford Univ. Press

Meixner, A. 1983(1):1-4, 1984(2): 32-34, 1985(1): 7-10: Combucha, der Teepilz. Südwestdeutsche Pilzrundschau, Stuttgart

Nelson, D. L., Cox, M. M. (2009): Lehninger Biochemie. 4.A. Berlin/Heidelberg: Springer

Nowotny, W. (2000): Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) – Lebensformen zwischen Pflanze
und Tier. https://www.zobodat.at/pdf/STAPFIA_0073_0007-0037.pdf

Pauly, Daniel (2010).5 Easy Pieces: The Impact of Fisheries on Marine Ecosystems. Washington, DC: Island Press

Podpregar, N. (2020). Skurril: Schleimpilz hilft bei Kosmos-Simulation. https://www.scinexx.de/news/kosmos/skurril-schleimpilz-hilft-bei-kosmos-simulation/

Probst, W. (2002): Kombucha – das Geheimnis eines Zaubertranks. Unterricht Biologie 280, S. 33-37, Seelze: Friedrich

Probst, W. (2010): Klebrige Samen. In: Probst, W.: Ungeladene, war klar Pflanzen leben. Unterricht Biologie Kompakt. Seelze: Friedrich

Reiß, J. (1987): Der Teepilz und seine Stoffwechselprodukte. Deutsche Lebensmittelrund­schau 83: 286-290

Reiß, J.: Herstellung von Lebensmitteln durch den Einsatz von Schimmelpilzen. In: Biologie in unserer Zeit 17 (2) 1987: 55-63

Rüeg, P., Ottleben, I, (2016): Glibber aus der Tiefsee – Super-Hydrogel nach natürlichem Vorbild. https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/01/schleimaale-projekt.html

Schlichting,H.J. (2021): Auf der Spur einer Schnecke. Spektrum.de https://www.spektrum.de/wissen/schneckenschleim-ist-ein-physikalisches-wunder-der-natur/1900312

Schramayer, G. (2012): Die Laubholzmistel – Vicum album ssp-album L. Amt der NÖ Landesregierung, Abteilung Landentwicklung (LF6), St. Pölten.

Stopp, F.(1961): Unsere Misteln. Die Neue Brehm-Bücherei. Wittenberg: Ziemsen-Verlag

Tubeuf, Freiherr K.v. (1923): Monographie der Mistel. München u.Berlin: Oldenbourg.Nachruck von Forgotten Books, London 2017

Wagner, E. (2012): Das glibberig-glitschige Buch vom Schleim. ArsEdition

Wedlich, S. (2019): Das Buch vom Schleim. Berlin: Matthes und Seitz

Wegner, C., Welz, T. (2015): Der kriechende Schleim. Unterricht Biologie 405, S. 41-43, Seelze: Friedrich

Bioplanetenschutz

LINK-NAME LINK-NAME

Dieser Beitrag beruht auf Recherchen, die ich im Zusammenhang mit dem Unterricht Biologie Heft „Naturschutz auf neuen Wegen“ (UB 465) durchgeführt habe. Das Heft ist im Sommer 2021 erschienen.

Seit Beginn der Industrialisierung haben sich die Verhältnisse auf unserem Bioplaneten Erde (Kattmann 1991,2004) durch exponentielles Wachstum von Wirtschaft und Bevölkerung drastisch verändert, besonders deutlich in den letzten Jahrzehnten. Dank der elektronischen Datenverarbeitung und immer genaueren Registrierungsmöglichkeiten durch Satelliten lassen sich diese Veränderungen recht genau beschreiben. Schon lange vorher gesagt aber erst in den letzten Jahren in den Mittelpunkt des kollektiven Bewusstseins gerückt ist die durch menschliche Aktivitäten verursachte Klimaerwärmung, um die Dimension dieser drastischen Entwicklung besonders zu betonen, wird neuerdings von „Klimaerhitzung“ gesprochen. Obwohl diese negativen Veränderungen besorgniserregend rasch voranschreiten, besteht nach wie vor Hoffnung auf eine Stabilisierung. Es gibt viele Ideen und auch schon realisierte Beispiele, wie man die Zukunft des Bioplaneten nachhaltiger gestalten könnte.

Bioplanetenschutz heißt Schutz der Funktionsabläufe

Nach konservativen Verständnis geht es im Naturschutz um den Erhalt oder gegebenenfalls auch die Wiederherstellung eines jetzigen oder früheren Zustandes, der den Menschen und seine Aktivitäten weitgehend ausklammert. In einem erweiterten Verständnis bedeutet der Schutz der Natur Schutz des Bioplaneten, d. h. insbesondere Schutz und Erhalt der Funktionsabläufe. In diesem Sinne können auch weitgehende Eingriffe und Manipulationen durch den Menschen (Geoengineering, synthetische Biologie), ökonomisch Maßnahmen wie Steuererhebungen oder juristische Maßnahmen wie Verbote von Verbrennungsmotoren oder Kohlekraftwerken als Naturschutzmaßnahmen verstanden werden.

Für die Rechtfertigung solcher Eingriffe sind einmal auf breiter wissenschaftlicher Basis erstellte Analysen und Prognosen erforderlich. Zum anderen müssen diese Erkenntnisse Grundlage von Bildung und Ausbildung werden. Neben neuen technischen Lösungen muss  Naturschutz deshalb verstärkt um die menschliche Akteure einschließen. Sozio-ökonomische Aspekte müssen mit gedacht und interdisziplinär behandelt werden. Dazu gehören besondere Anreize für umweltfreundliches oder naturschutzkonformes Verhalten, deren Vorteile unmittelbar wirksam werden. Nur dann wird es möglich sein, den demokratischen Konsens herzustellen, der für eine politische Durchsetzung sinnvoller Maßnahmen notwendig ist.

Landschaftsgestaltung, Renaturierung, Regeneration

Landschaftsgestalterische Maßnahmen können zur Renaturierung oder sogar Regenerierung von Ökosystemen führen oder neue artenreiche Ökosysteme entstehen lassen.

  • Die Wiedervernässung von Mooren kann deren Fähigkeit wieder herstellen, Kohlenstoff in unvollständig abgebautem Pflanzenmaterial zu speichern. Außerdem wirken die Torfkörper der Moore regulierend auf den Wasserhaushalt.
  • Die Restauration und Neugewinnung ausgedehnter Schilfgürtel um Gewässer, kann die Qualität belasteter Gewässer verbessern, insbesondere den Nitrat- und Phosphatgehalt mindern, aber auch viele andere Schadstoffe binden.
  • Die naturnahe Gestaltung von stillgelegten Kiesgruben, Steinbrüchen  und Tagebauflächen  (z. B. Braunkohle)  kann ökologisch wertvolle Biotope und Landschaften entstehen lassen und damit die Biodiversität fördern.
  • Entrohrung, Renaturierung und Remäandrierung von Bachläufen kann die Wasserqualität verbessern, Überschwemmungsgefahren mindern und im Sinne eines natürlichen Wasserkreislauf wirken. Außerdem entstehen dadurch vielseitige Lebensräume, welche die Biodiversität fördern.
  • Die Anlage von marinen Hartsubstratböden, z. B. um Offshore-Windparks kann die Biodiversität fördern, insbesondere durch die Schaffung neuer Siedlungsflächen für Aufwuchsorganismen und Brutgebiete  für Fische.
  • Durch geeignete Maßnahmen können bisher eher als Plantagen genutzte Waldgebiete in naturnahe Wälder umgebaut werden.
  • In potenziellen Waldgebieten kann der Anteil der Bewaldung durch Aufforstungsmaßnahmen erhöht werden.
  • Extensiv genutzte Weideflächen („Wilde Weiden“) lassen vielseitig strukturierte Landschaften mit hoher Biodiversität entstehen.
  • Vor allem in Trockengebieten können überweidete Landschaften durch Regulierung des Weidegangs aufgewertet werden.
Durch Überweidung desertifizierte Landschaft in Nordafghanistan bei Kunduz,25.7.1974 (Foto W.Probst)

Für diese Renaturierungs- und Regenerationsmaßnahmen werden viele Arbeitskräfte benötigt. Durch entsprechende Förderprogramme können Landwirtschaft und Forstwirtschaft in Renaturierungsprogramme eingebunden werden.

Eine weitere Möglichkeit bestünde darin, für solche Aufgaben verstärkt das Militär einzusetzen und dafür entsprechende Kenntnisse und Fertigkeiten in die militärische Ausbildung einzubauen (J. Ellington in Randers 2012).

Besonders spektakuläre Großprojekte sind Chinas „Grüne Mauer“ und die 2005 diesem Vorbild folgende von der Afrikanischen Union initiierte grüne Mauer durch die Sahelzone . Sie sollen Wüstenbildung aufhalten und teilweise rückgängig machen. 

Die chinesische „Grüne Mauer“ verdankt ihren Namen der chinesischen „Großen Mauer“: Während die Große Mauer Schutz gegen die Völker aus dem Norden bieten sollte, soll die Grüne Mauer vor Wüstenstürmen schützen. Das Projekt wurde schon 1978 begonnen und soll bis 2050 fortgesetzt werden. Bis dahin sollen 350.000 km² – dies entspricht etwa der Fläche der Bundesrepublik – mit Bäumen bepflanzt sein. Dabei besteht allerdings die Gefahr, dass durch die Bewässerung der neu angelegten Schutzwälder alte, flussbegleitende Wälder geschädigt werden (Missall u.a. 2018).

Afrikas „Grüne Mauer“ (GGWSSI; Great Green Wall of the Sahara and the Sahel Initiative) ist als 7775 km langer, mindestens 15 km breiter Baumstreifen geplant, der die Trockenregion am südlichen Rand der Sahara von Dakar bis Dschibuti durchziehen soll. Die Idee geht auf den 1987 ermordeten Präsidenten von Burkina Faso Thomas Sankara und auf die kenianische Professorin und Nobelpreisträgerin Wangari Maathai und ihr „green belt movement“ zurück. Unter der Präsidentschaft des damaligen Präsidenten von Nigeria Olusegun Obasanjo übernahm die Afrikanische Union das Projekt. Bisher wird es von 22 afrikanischen Staaten unterstützt. Mittlerweile sprechen viele Verantwortlichen nicht mehr von einer Mauer sondern eher von einem Mosaik, da verstärkt in Dorfgemeinschaften verwurzelte Projekte unterstützt werden sollen. Außerdem soll auch der Erhalt und  Schutz bereits existierender Baumbestände stärker gefördert werden.  Auf dem „One Planet Summit“ im Januar 2021 in Paris hat die internationale Gemeinschaft 11,8 Mrd. Euro für das Projekt zugesagt.

Über diese und zahlreiche weitere Aufforstungsprojekte berichtet Daniel Schilk in seinem 2019 erschienenen Buch „Die Wiederbegrünung der Welt“.

Ökosystemerhalt durch assistierte Evolution

Die Idee, gefährdete Arten dadurch zu erhalten, dass man sie in Gefangenschaft oder im Labor züchtet und dann in natürlichen Ökosystemen freilässt, ist schon mehr als 100 Jahre alt.1895 hat der Geschäftsmann und Ornithologe Edward McIlhenny auf diese Weise in Louisiana die vom Aussterben bedrohten Schmuckreiher erhalten. Zwischen 1885 und 1807 konnte Richard Henry den neuseeländischen Kakapo (flugunfähiger Papagei) und den Kiwi durch Translokation von Tieren auf die vor der Westküste Neuseelands liegenden Insel Resolution Island vor dem Aussterben retten (Seddon 2017). Mittlerweile gibt es viele mehr oder weniger erfolgreiche Beispiele solcher Versuche, durch Translokation oder Zucht und Aussetzen gefährdete Arten zu erhalten, in Mitteleuropa zum Beispiel Luchse, Biber und Waldtrappe. Dabei geht es nicht nur um den Erhalt der betreffenden Arten sondern auch um die Funktion der Ökosysteme. Durch die Wiederetablierung von Schlüsselarten hofft man, Ökosysteme zu regenerieren oder auch neue wertvolle Ökosysteme zu schaffen.

Doch auch über weitergehende Schritte wird nachgedacht. Dabei könnte die synthetischen Biologie eine wichtige Rolle spielen, indem ausgestorbene Arten wie das Wollhaar-Mammut oder der Auerochse gentechnisch rekonstruiert werden (De-Extinction, Redford 2017). Als Quelle könnte genetisches Material aus alten Sammlungen oder aus Fossilien und verwandte noch lebende Arten genutzt werden.

Die Überlegungen gehen noch einen Schritt weiter: Es können nicht nur natürliche Arten künstlich vermehrt oder wiederhergestellt, sondern auch „verbessert“, also durch Zucht oder Gentechnik gezielt verändert werden. Bei Riffkorallen soll zum Beispiel versucht werden die endosymbiontisch Zooxanthellen gentechnisch so zu verändern, dass sie auch bei höheren Meerestemperaturen funktionsfähig bleiben und dadurch Korallenbleiche vermieden werden können. Allgemein soll es durch das Einbringen solcher „verbesserter“ Lebewesen, die veränderte Umweltbedingungen besser aushalten,gelingen Ökosysteme als Ganzes zu erhalten.

Bisher wird Assistierte Evolution vor allem an Korallenriffen erprobt.

Erhalt, Regeneration und Neuschaffung von Ökosystemen mit Hilfe Assistierter Evolution (Grafik W.Probst)

Verhinderung der Klimaerwärmung durch Geoengineering

Durch technische Eingriffe in das Klimasystem (Geoengineering) soll die Klimaerwärmung vermindert werden. Dabei sind vor allem zwei Möglichkeiten denkbar:

  • Der Atmosphäre werden direkt Treibhausgase, insbesondere Kohlenstoffdioxid, entzogen (Carbon Dioxid Removal CDR, Carbon Capture and Storage, CCS).
  • Die auf die Erde eintreffende Sonnenstrahlung wird verringert (Solar Radiation Management SRM).
Methoden des Geoengeneering (W. Probst verändert nach Angaben in Gynsky u.a. 2011)

Die Bindung von Kohlenstoffdioxid kann entweder terrestrisch oder marin erfolgen. Klassische Vorschläge beruhen auf Methoden, durch die der Aufbau von Biomasse – zum Beispiel durch großflächige Aufforstung – gefördert wird oder Kohlenstoff haltiges Material in den Boden eingearbeitet wird (Beispiel Terra Preta). Auch Möglichkeiten, CO2 direkt aus der Luft zu filtern und unterirdisch dauerhaft zu speichern – zum Beispiel durch Einpressen in tiefliegende geologische Formationen (Carbon Capture and Storage, CCS). Die meisten derzeit laufenden Pilotprojekte testen die Integration dieser Art der CO2 Abscheidung direkt in der Kombination mit Kohlekraftwerken, weil dort in den Abgasen der CO2 Gehalt hoch ist. Die Möglichkeit der direkten Filterung aus der Luft, in der CO2 derzeit höchstens zu 0,5 Volumenpromille enthalten ist, wäre bisher zwar möglich aber sehr kostenaufwendig.

Um CO2 verstärkt in den Ozeanen zu binden, wird die Ozeandüngung diskutiert. Dabei bedient man sich der sogenannten biologischen Pumpe. Kohlenstoffdioxid wird von Mikroalgen assimilert und ein Teil davon wird als dauerhaftes Kohlenstoff-haltiges Sediment am Meeresboden abgelagert. Durch Düngung könnte die Phytoplanktonproduktion angeregt werden. Da man von den Makronährmineralien Nitrat und Phosphat sehr große Mengen benötigen würde, hat man bei bisherigen Versuchen mit dem Mikronährmineral Eisen gearbeitet Entsprechende verhältnismäßig kleinräumige, zeitlich begrenzte Versuche, die zu Beginn des Jahrhundert durchgeführt wurden, hatten allerdings wenig überzeugende Ergebnisse. Zwar konnte man zunächst Algenblüten bewirken, aber das Absinken des Phytoplanktons trat nur in sehr geringem Maße ein. Ein großer Teil wurde vom Zooplankton aufgenommen und dadurch veränderten sich die Nahrungsnetze. Auch die Blüte von toxischen Kieselalgen konnte beobachtet werden. Zudem ist die kontinuierliche Düngung sehr energieaufwendig und die Bilanz des tatsächlich gebundenen CO2 ist dadurch viel geringer als zunächst theoretisch berechnet wurde.

Eine weitere Möglichkeit, die Phytoplanktonproduktion zu erhöhen, läge in der Manipulation der marinen Schichtung. Wenn man verstärkt nährmineralreiches Tiefenwasser in obere Wasserschichten verlagern könnte – wie dies unter derzeit natürlichen Bedingungen zum Beispiel an der Westküste des amerikanischen Kontinents geschieht – könnte man die Phytoplanktonproduktion anregen. Entsprechende aus langen Rohren bestehende Pumpen, die vom Wellenschlag angetrieben werden, wurden zwar erfolgreich konstruiert. Um einen messbaren Effekt bei der marinen CO2– Speicherung zu erreichen, wären allerdings eine sehr große Zahl solcher Pumpen notwendig und die Folgewirkungen sind schwer abzuschätzen.

Außer durch die biologische Pumpe wird auch durch eine physikalische Pumpe CO2 von der Oberfläche in die Tiefen der Weltmeere befördert. Kalte Wassermassen mit hohem Salzgehalt im Nordatlantik und in dem antarktischen Zirkularstrom sinken ab und setzen globale Meeresströmungen in Gang, bei denen es an anderer Stelle zum aufsteigen von Tiefenwasser kommt. Da CO2 in kaltem Wasser eine höhere Löslichkeit hat als in wärmeren Wasser, wird durch diesen Prozess langfristig CO2 aus der Atmosphäre in die tieferen Wasserschichten transportiert. Aber alle Methoden, die bisher versucht wurden, um diesen Absinkeprozess zu verstärken, waren nicht erfolgreich, insbesondere, weil das Absinken des Wassers an anderen Stellen den Auftrieb verstärken und damit kohlenstoffdioxidreiches Wasser an die Oberfläche befördern würde. Ob die Bilanz dann tatsächlich zu einer verstärkten marinen CO2– bzw. C-Speicherung führen würde, ist fraglich.

Die zweite Möglichkeit ist die Verringerung der auf der Erde auftretenden Sonnenstrahlung, also die Beeinflussung des Strahlungshaushaltes (Solar Radiation Management SRM). Sie beruht einmal auf Methoden, welche die Reflexion der Strahlung verstärken, also die Erhöhung des Albedos der Erdoberfläche. Diskutiert wird zum Beispiel das Weißeln von Dachflächen oder die Installation von großen Reflektorflächen in Wüsten oder auf Meeren. Zur zum anderen könnte das Einbringen von Aerosolen in die Stratosphäre oder von großflächigen Spiegeln in den Weltraum das Durchdringen der Sonnenstrahlen bis zur Erdoberfläche verringern. Alle diese Methoden sind höchst umstritten, da man nur schwer Aussagen über die dabei auftretenden Nebeneffekte und Folgen machen kann. Außerdem ist der finanzielle Aufwand sehr hoch.

Insgesamt birgt Geoengineering große Risiken. Wenn sich aber zeigt, dass die vom Weltklimarat 2018 festgelegten Klimaziele  anders nicht erreicht werden können, wird man die Risiken einiger solcher Methoden wahrscheinlich in Kauf nehmen (Ginsky u.a. 2011).

Kreislaufwirtschaft zur Abfallvermeidung

Vermeidung von Abfall und Umweltverschmutzung  muss nicht (nur) auf Sparsamkeit und Verzicht aufgebaut sein, mindestens genauso wichtig ist eine konsequente Kreislaufwirtschaft: Alle Produkte müssen so konzipiert und  hergestellt werden, dass sie „rematerialisierbar“ sind, ob Möbel, Kleider, Autos, Baumaschinen Häuser oder Lebensmittelverpackungen. Nach Ansicht des Chemiker und Designers Michael Braungart und des Architekten William McDonough ist dieses „cradle to cradle-Prinzip“ (C2C, „Von der Wiege zur Wiege“)  sogar alleine entscheidend. (McDounough, Braungart 2009). Sie berufen sich dabei auf die Natur als Vorbild. Die üppigsten und artenreichsten Ökosysteme, die tropischen Regenwälder, sind nicht nur die produktivsten, sie setzen auch die größten Stoffmengen um. Daraus folgert Braungart, dass es nicht darum gehen kann, zu „sparen“ also, weniger umzusetzen, sondern darum, nicht zu „verbrauchen“ sondern zu „gebrauchen“. „Verschwendet! Aber richtig: Macht keinen Müll!“ fordert er. Sonnenenergie steht im Prinzip soviel zur Verfügung, dass es kein Problem ist, verschwenderisch damit umzugehen. Soziale Ungerechtigkeit und das Nord-Süd-Ungleichgewicht können nicht durch Sparsamkeit gelöst werden. Ihre Lösung ist aber Voraussetzung für geordnete, friedliche Verhältnisse auf unserem Planeten.

Dieses Konzept steht in gewissem Widerspruch zu der Forderung einer verminderten Ressourcennutzung wie sie vom Wuppertal Institut für Klima,Umwelt, Energie, zunächst als „Faktor 4“ (v. Weizsäcker, Lovins, Lovins 1995) später als „Faktor 10“ (Schmidt-Bleek 1997) propagiert wurde. Sicher kann es bei einer zukunftsfähigen, nachhaltigen Wirtschaft nur um ein „Sowohl-als-auch“ gehen, denn Kreislaufprozesse ganz ohne Abfall und Umweltschäden – das zeigt auch das Vorbild Natur – gibt es nicht. Fossile Brennstoffe sind ein Beispiel für solche natürlichen Abfälle und globale Katastrophen. Gutes Beispiel für die menschliche Wirtschaft  ist die große Verschwendung von Nahrungsmitteln und die damit verbundene Zerstörung von gut funktionierenden Kreislauf-Ökosystemen und inhumaner Nutztierhaltung.

Wie zukünftiges Wirtschaften verbessert werden könnte zeigt ein in Dänemark entwickelter Industriepark, in dem eine „Symbiose“ zwischen verschiedenen Industrieunternehmen nicht nur eine starke Abfallverminderung sondern auch eine bessere Energienutzung ermöglichen (Kalundborg Symbiosis 2020).

Das größte Problem beim Plastikabfall sind die Verpackungen. Eine konsequente Einführung von kompostiertem Verpackungsmaterial könnte hier große Verbesserungen bringen. Weltweit hat die sehr erfolgreiche Einführung von Kaffeepads aus Kunststoff oder Aluminium zu einem enormen Anstieg von Verpackungsmüll und Ressourcenverbrauch geführt, jährlich mittlerweile über 40 Milliarden Kapseln. Aber immer mehr Firmen versuchen, kompostierbare Verpackugen zu produzieren. Ein Beispiel ist die Firma Nexe Innovations, die derzeit mit ihren kompostierbaren Kaffeepads recht erfolgreich ist, die in allen gängigen Kaffeemascinen verwendet werden können.

Neobiota-Management

Im Laufe der Erdgeschichte zerbrachen Kontinente oder schoben sich zusammen, Inseln und Inselarchipele entstanden neu oder gingen unter, aus Grabenbrüchen wurden Ozeane, Meeresbuchten wurden abgetrennt, Binnenmeere öffneten sich zum Ozean. Diese geologischen Ereignisse wurden begleitet  von Ausbreitung, Rückgang, Einwanderung und Auswanderung von Lebewesen. Die Invasion neuer Arten und die Ausbreitung von Krankheitserregern und die dadurch bedingten Veränderungen von Ökosystemen sind ein natürlicher Vorgang in der Geschichte des Lebens. Doch im Gegensatz zu den geologischen Veränderungen haben die anthropogen verursachten globalen Veränderungen der letzten Jahrhunderte und vor allem der letzten Jahrzehnte zu einer enormen Beschleunigung dieser Invasionen beigetragen.

Schon im Zeitalter der europäischen Eroberungen und Kolonisationen und der Einwanderung von Europäern nach Amerika und Australien  wurden Tier- und Pflanzenarten von Menschen gezielt von Kontinent zu Kontinent verbreitet.

In den letzten Jahrzehnten haben der globale Warenaustausch und der Reiseverkehr, aber auch die gezielte Einfuhr gebietsfremder Arten, zu einer starken Zunahme von Neobiota (Neubürgern) geführt. Diese Einwanderer sind ein ernst zu nehmendes Naturschutzproblem geworden. Durch die Verdrängung einheimischer Arten können sie Ökosysteme verändern und schließlich das Aussterben von Arten bewirken („invasive Arten“). In der EU-Liste invasiver gebietsfremder Tier- und Pflanzenarten („Unionsliste“) werden derzeit 66 Tier- und Pflanzenarten als möglicherweise invasiv aufgelistet. Bereits in Deutschland etabliert sind zum Beispiel der Riesen-Bärenklau (Heracleum mantegazzianum), das Indische Springkraut (Impatiens glandulifera), der Kamberkrebs (Orconectes limosus) und die Amurgrundel (Percottus glenii) (NABU 2019). Neben einer Konkurrenz mit einheimischen Arten geht es dabei auch um Schädlinge wie Kartoffelkäfer, Asiatischem Marienkäfer, Varoamilbe oder Buchsbaumzünsler, gegen die ansässige Arten kaum Abwehrkräfte entwickelt haben.

Wegsaum mit Drüsigem Springkraut (Impatiens glandulifera) im Rotwildpark Stuttgart, September 1991. Die Art stammt aus dem Himalaja und wurde 1839 nach England eingeführt. Von dort gelangte sie auf den Kontinent. Heute gilt sie als invasiver Neophyt und wird teilweise bekämpft. Verschiedene Untersuchungen zeigen jedoch, dass die Pflanze die natürliche Waldverjüngung kaum negativ beeinflusst (Foto W. Probst).

Besonders gefährdet durch invasive Arten waren und sind Inseln mit speziellen Ökosystemen und vielen endemischen Arten. Die absichtliche Aussetzung von Ziegen und Schweinen und die unabsichtliche Einfuhr von Ratten durch die frühen Seefahrer des 16.-19. Jahrhunderts hatten schon verheerende Auswirkungen auf pazifischen Inseln, aber auch die Besiedlung von Amerika, Australien und Neuseeland durch Europäer hat einen gewaltigen Invasionsschub verursacht, der das Ende zahlreicher einheimischer Arten bewirkte. Gut dokumentiert ist der Artenrückgang auf der Pazifikinsel Guam, der durch die eingeschleppte Braune Nachtbaumnatter (Bioga irregularis) verursacht wurde (Probst 2010).

Aber sind alle Neobiota problematisch? Einer der führenden Neobiota-Forscher, Ingo Kowarik, gibt darauf folgende Antwort:

  • Ja, wenn Veränderungen von Natur als Problem gesehen werden.
  • Ja wenn „Fremdes“ als negativ gesehen wird.
  • Nein, wenn unterschiedliche Auswirkungen berücksichtigt werden.

(Ingo Kowarik bei einem Vortrag zum Landesbiologentag an der Universität Hohenheim am 7.11.2020).

Durch auf wissenschaftlichen Grundlagen erarbeitete Management-Pläne versucht man, schädliche Auswirkungen von Neobiota auf die Biodiversität zu begrenzen. Ein Beispiel: Durch den organsierten Austausch von Ballastwasser in der marinen Schifffahrt seit 2017 soll die Einschleppung gebietsfremder Arten verhindert werden.

Pandemien und Naturschutz

Mit dem globalisierten Austausch von Menschen und Waren haben sich auch Krankheitserreger ausgebreitet. Dies führte nicht selten in den neuen Ausbreitungsgebieten zu verheerenden Epidemien. Besonders betroffen waren  indigene Bevölkerungsgruppen Amerikas, zum Beispiel die mittlerweile (fast?) ausgestorbenen Ureinwohner Feuerlands, die Yagan oder Yamana (Kaiser 2013).

Auch in umgekehrter Richtung wurden schon lange Keime übertragen, zum Beispiel der Cholera-Erreger Vibrio cholerae aus Indien. Auch die Übertragung von Krankheitserregern von Tieren auf Menschen geht bis in das Neolithikum zurück, als durch die Einführung der Nutztierhaltung der Kontakt zwischen Tieren und Menschen enger wurde. Masern und Tuberkulose stammen von Kühen, Keuchhusten von Schweinen und Grippe von Enten (Shah 2020).

Die rasant voranschreitende Globalisierung der letzten Jahrzehnte hat die rasche Ausbreitung von Krankheitserregern, insbesondere von Bakterien und Viren, weiter gefördert. Dabei spielen nicht nur die größere Mobilität der Bevölkerung und der Reiseverkehr über große Entfernungen eine wichtige Rolle, sondern auch die immer stärkere Einschränkung von Wildtierpopulationen durch Verlust natürlicher Lebensräume, zum Beispiel tropischer Regenwälder. In den kleineren Populationen können sich Erreger schneller ausbreiten. Außerdem fördert der immer intensivere Kontakt der ständig wachsenden menschlichen Bevölkerung mit Tieren früher sehr abgelegener Regionen den Übergang von Krankheitskeimen von Wildtieren zu Menschen (Beispiel AIDS, Ebola, Vogelgrippe H1N5, SARS-Corona, Covid 19; vgl. Ruppert 2021, Keesing 2010, Jones 2008).

Man kann nur hoffen, dass die derzeitigen Erfahrungen mit der Covid 19 Pandemie zu einem Umdenken und einer vorsichtigeren Vorgehensweise führen.

Die immer intensivere Einflussnahme des Menschen auf alle Lebensräume und die räumliche Einschränkung naturnaher Biotope sollte gestoppt und womöglich rückgängig gemacht werden. Dabei geht es insbesondere darum, die Vielfalt der Arten in ausreichender Populationsgröße zu erhalten. Dadurch kann erreicht werden, dass sich Viren, auch neue mutierte Viren, nicht flächendeckend ausbreiten, sondern eher in einer Nische bleiben und nach einiger Zeit wieder Aussterben (infektionsbiologischer Verdünnungseffekt). Auch Generalisten wie Ratten oder Sperlinge, die für die Übertragung auf menschliche Populationen besonders gefährlich sind, sind in intakten Ökosystemen weniger verbreitet .

Inklusiver Naturschutz

Naturschutz sollte nicht nur in abgegrenzten Gebieten oder Biotopen stattfinden sondern überall. Die Einrichtung von Naturschutzgebieten hat zwar insofern eine gewisse Berechtigung, als es leichter ist, ökologisch wertvolle Lebensgemeinschaften, Schlüsselarten und Habitate auf diese Weise zu schützen. Außerdem sind naturnahe, von Menschen wenig beeinflusste Gebiete eine wichtige Voraussetzung für die ökologischen Funktionen des Bioplaneten. Es besteht aber die Gefahr, dass außerhalb von Schutzgebieten auf Natur und natürliche Funktionsabläufe keine oder zu wenig Rücksicht genommen wird. Angesichts der immer intensiveren Nutzung der Erde durch den Menschen wird es außerdem immer schwieriger, ausreichende Flächen für ungenutzte Gebiete bereitzuhalten. Flächendeckender „inklusiver“ Schutz der Natur auch in Städten und Gewerbegebieten, in Agrarlandschaften und entlang von Verkehrswegen wird deshalb immer wichtiger. Es gibt mittlerweile viele Ansätze, wie Natur auch außerhalb von Schutzgebieten nicht „ausgeschaltet, sondern eingeschaltet“ werden kann (Le Roy 1973), und Biodiversität und natürliche Funktionsabläufe erhalten bleiben.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologisch“ werden. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Grewe 2020). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Die dynamische Vergrößerung städtischer Flächen von1985-2015. Datengrundlage sind Landsataufnahmen mit einer Auflösung von 30m. b) Steigungsrate des Stadtflächen-Wachstums auf den verschiedenen Kontinenten (Quelle Liu et al. 2020).
Vernetzte Dachgärten (Zeichnung W.Probst)

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur bodenständigen Grundflächen hergestellt werden.

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Eine Möglichkeit: Flächenhafte Begrünungsmodule, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente können aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde. Regenwasser können den Zisternen gespeichert und in Trockenperioden zur Bewässerung genutzt werden wodurch die Kanalisation entlastet würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Begrünte Wohnblocks (Modellbau W.Probst)

Landwirtschaft

In der Landwirtschaft sollten großflächige Monokulturen durch ökologisch wertvollere Netze (Feldhecken, Blumenstreifen, Bachläufe) und Inseln (Feldgehölze, Feuchtgebiete) unterbrochen werden. Mischkulturen aus Gehölzen, mehrjährigen und einjährigen Nutzpflanzen (Agroforestry) könnten vor allem in wärmeren Klimaregionen eine ökologische Alternative zu Monokulturen darstellen. Die sehr aufwändige arbeitsintensive Bewirtschaftung würde durch einen Einsatz intelligenter Maschinen zu vertretbaren Produktionskosten möglich.

Nachhaltige Landwirtschaft: Vertical Farming spart Flächen und erleichter Stoffkreisläufe; Vernetzung durch Feldhecken und Wildpflanzenstreifen erhöht die Biodiversität in Agrarflächen und wird durch intelligente Maschinen möglich; Agroforestry, Anbau von Kulturpflanzen in mehreren Vegetationsschichten, fördert die Biodiversität und eignet sich vor allem für wärmere Klimazonen (z.B. in Kombination mit Kaffee- und Kakaoanbau) (Zeichung W.Probst)

Landwirtschaft 4.0

Lange Zeit wurden Landmaschinen – den Dinosaurier vergleichbar – immer größer und größer. Vergleicht man einen Traktor aus den 19hundertfünfziger Jahren mit einer heutigen Maschine wird dieser Hang zum Gigantismus deutlich. Er hängt natürlich direkt zusammen mit der Vergrößerung der landwirtschaftlichen Betriebee und vor allem der bewirtschafteten Flächen. Die Dinosaurier sind nicht zuletzt auch wegen ihrer Größe ausgestorben. Die immer größeren Landmaschinen stellen für die Landwirte eine große finanzielle Belastung dar und sicher sind sie ein Grund dafür, dass immer mehr landwirtschaftliche Betriebe aufgeben müssen. Auch die Verdichtung der Böden durch die Riesentraktoren ist ein großer Nachteil. Die Entwicklung kleiner intelligenter Landmaschinen könnte eine neue, ökologisch verträglichere und damit nachhaltigere Form der Landbewirtschaftung einleiten. Diese Maschinen könnten – ähnlich wie ein Schweizer Armeemesser – viele Funktionen in sich vereinen: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden, Insektiziden und Fungiziden, sondern auch mit angepassten Düngemitteln, und der auch für eine gezielte Bewässerung sorgt. Dies alles könnte in einem Arbeitsgang und in individuell angepassten Mengen geschehen. Die Folgen einer solchen Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Diese Maschinen könnten von Drohnen oder von Satelliten gesteuert die jeweiligen Zielorte erreichen. Eine Weiterentwicklung der Erntemaschinen könnte Mischkulturen und Agroforestry wirtschaftlicher machen.

Vertical Farming

Eine zukunftsweisende und flächensparende Form zur Produktion von Nahrungsmitteln und anderen nachwachsenden Rohstoffen wird mit dem Begriff „Vertical Farming“  bezeichnet. Der New Yorker Professor für Umweltgesundheit und Mikrobiologie Dickson Despommier entwickelte mit seinen Studenten ab 1999 entsprechende Ideen  zunächst für die Nahrungsmittelversorgung der 50000 Einwohner Manhattans. Ausgangspunkt waren Überlegungen zum möglichen Gemüseanbau auf Dachflächen. In der Weiterentwicklung  wurden Hochhäuser geplant, die insgesamt der Pflanzenkultur dienen sollen. Diese Einbindung von Farmen in das Innere von Gebäude wird mit dem Begriff „Sponge City- Architecture“ oder „Agritecture“ bezeichnet. In mehreren oder allen Stockwerken eines solchen  Hochhauses sollen Pflanzen auf optimale Weise automatisch gesteuert und reguliert kultiviert werden. Gleichzeitig sind diese Kulturen in Kreislaufsysteme, insbesondere der  Wasserwiederverwendung und Abwasseraufbereitung, eingebunden (Despommier 2011). Auch eine Kopplung mit Aquakulturen und anderen Formen der Nutztierhaltung ist möglich.

Der Vorteil solcher Plantscraper ist nicht nur der gegenüber normalem Farmland  10-20mal geringere Flächenverbrauch. Erhebliche Ressourcen könnten dadurch ein gespart werden, dass es einen geschlossenen Wasserkreislauf gibt und kontrollierte Umgebungsbedingungen den Einsatz von Pestiziden und Düngemitteln reduzieren. Die Kulturen sind unabhängig von Außenbedingungen wie Dürre, Frost, Starkniederschläge, Hagel und Sturm und sie können ganzjährig betrieben werden. Künstliches Licht kann Pflanzenwachstum rund um die Uhr auch in dunklen Jahreszeiten ermöglichen. Die schnellere und einfachere Versorgung der städtischen Bevölkerung mit frischen Nahrungsmitteln erfordert weniger Transportkosten, verbessert die Luft und mindert über Wasserspeicher die Überflutungsgefahr. Die Energieversorgung kann über Solarzellen, Windenergieanlagen und die Produktion von Biogas aus organischen Abfällen in einem Kreislaufsystem gesichert werden.

Der extrem dicht bevölkerte Stadtstaat Singapur plant seine Nahrungsmittelversorgung durch schwimmende Hochhäuser zu verbessern.

Geplante schwimmend Plantscraper für Singapur (Quelle
https://www.designboom.com/architecture/forward-thinking-architecture-japa-floating-responsive-agriculture-07-18-2014/ )

Voraussetzungen für den erfolgreichen Betrieb solcher Hochhausfarmen ist eine ausgefeilte Technik, die von intelligenten Computersystemen gesteuert wird. Das schwedische Architekturbüro Plantagon plant ein Forschungszentrum für urbane Landwirtschaft in Linköping zu entwickeln. Ausgangspunkt soll ein im Bau befindlicher Plantscraper sein, an dem technische Systeme erprobt und verbessert werden können.

Modell-Plantscraper in Linköping,Schweden, im Bau (Quelle: http://www.plantagon.com/about/business-concept/the-linkoping-model/ )

Verkehrswege

Durch Brücken und Tunnel kann der Zerschneidungseffekt von Verkehrswegen gemindert werden (Zeichnung W.Probst)

Je dichter die Besiedelung, desto dichter sind nicht nur Städte, Siedlungen  und Industrieanlagen, desto dichter ist auch das Netz von Verkehrswegen, insbesondere Straßen und Autobahnen (in Deutschland  derzeit nach Erhebung des Umweltbundesamt knapp 20000 km², das entspricht rund 5,5% der  Landesfläche). Das wirkt sich r nicht nur über den Flächenverbrauch und die Versiegelung sondern vor allem über den Zerschneidungseffekt nachteilig auf die Funktion von Ökosystemen aus. Mehr noch als Pflanzenarten sind Tierpopulationen durch die dadurch bedingte Verinselung betroffen. Auch die direkte Tötung von Tieren durch den Verkehr spielt eine Rolle. Indirekt wirkt sich dies über die Bestäuber und die Verbreitung von Früchten und Samen auf die Vegetation aus.

Eine Verbesserung kann einmal durch geeignetes Straßenbegleitgrün erreicht werden (Kühne/Freier 2012). Vor allem aber kann die trennende Wirkung von Verkehrsflächen durch Brücken, sowohl Brücken über schützenswerte Landschaftsteile als auch verbindende Grünbrücken, und Tunnel erreicht werden. Schutzgräben oder Zäune können in Kombination mit kleinen Tunneln insbesondere  Amphibien bei ihren Laichwanderungen schützen (Krötenzaun, Krötentunnel).   Nicht mehr benötigte Verkehrswege sollten renaturiert (entsiegelt) werden.

Schließlich sind die hohe Verkehrsdichte und die damit verbundenen Emissionen der Verkehrsmittel ein großes Problem. Sie wird einmal durch den Individualverkehr, zum anderen durch den Güterverkehr verursacht. Beide haben in den letzten Jahrzehnten ständig zugenommen. Eine größere Verlagerung dieses Verkehrs auf die Bahn wird schon lange als Ziel formuliert, ließ sich aber bisher politisch nicht durchsetzen. Auch eine Förderung dezentraler Produktion könnte der ständigen Zunahme des Güterverkehrs entgegenwirken.     

Quellen

BMU (2020): Plastikmüll – ein Problem, das uns alle angeht. https://www.bmu-kids.de/wissen/boden-und-wasser/wasser/meeresumweltschutz/plastikmuell-im-meer/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Dasgupta,  P. (2020): Interim Report – The Dasgupta Review: Independent Review on the Economics of Biodiversity. Crown copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

De Souza Machado, A. A., Lau, C. W. u. a. (2019): Microplastics Can Change Soil Properties and Affect Plant Performance. In: Environmental Science & Technology. 53, S. 6044, doi:10.1021/acs.est.9b01339.

Dierkes, P., Homes, V. (2017): Artenschutz. UB 427 (41.Jg.), S. 2-11, Seelze: Friedrich

Gynsky, H. u. a. (2011): Geo-Engeneering – wirksamer Klimaschutz oder Größenwahn? Dessau-Roßlau: Umweltbundesamt https://www.umweltbundesamt.de/s/default/files/medien/publikation/long/4125.pdf

Hallmann, C. A. u.a. (2017): More than 75 percent decline over 27 years in total flying insect biomass in protected areas.PLOS one https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185809

Heinrich-Böll-Stiftung und BUND (2020): Der Plastikatlas 2019, 4. Aufl.

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policymakers

https://iopscience.iop.org/article/10.1088/1748-9326/9/1/014010

Jones, K.E. u.a. (2008): Global Trends in Emerging Infectious Diseases. Nature 451, S. 990-993

Kaiser, A. (2013): „Indianer“ im Sachunterricht. Baltmannsweiler: Schneider

Kalundborg Symbiosis http://www.symbiosis.dk/en/

Kattmann, U. (1991). Bioplanet Erde: Neue Ansichten über das Leben. Unterricht Biologie15(162), 51-53.

Kattmann, U. (2004). Bioplanet Erde: Erdgeschichte ist Lebensgeschichte. Unterricht Biologie28(299), 4-14.

Keesing, F. u.a. (2010): Impacts of Biodiversity on the Emergence and Transmission of Infectious Diseases. Nature 468, S. 647-652

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem

Le Roy, L. G. (1973): Natur ausschalten – Natur einschalten. Stuttgart: Klett Cotta

Little, A. (2019): The fate of food. What we’ll eat in a bigger, hotter, smarter World. London: Oneworld Publications

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

Matthews, H.D., et al. (2014): National contributions to observed global Warming, Environmental Research Letters 9, doi:10.1088/1748-9326/9/1/014010

McDounough, W./Braungart, N. (2009): Cradle-to-cradle. New York: Vintage

Meyer-Abich KM (1990): Aufstand für die Natur. Von der Umwelt zur Mitwelt. Hanser, München

Missall, S. u. a. (2018): Trading Natural Riparian Forests for Urban Shelterbelt Plantations—A Sustainability Assessment of the Kökyar Protection Forest in NW China. Water- MDPI file:///C:/Users/WIPRO_~1/AppData/Local/Temp/Trading_Natural_Riparian_Forests_for_Urban_Shelter.pdf

Müller, F. u. a. (2020): Leitsätze der Kreislaufwirtschaft. Dessau-Roßlau:Umweltbundesamt. https://www.umweltbundesamt.de/s/default/files/medien/1410/publikationen/2020_04_27_leitlinie_kreislaufwirtschaft_bf.pdf

Die EU-Liste invasiver gebietsfremder Tier- und Pflanzenarten. https://www.nabu.de/tiere-und-pflanzen/artenschutz/invasive-arten/unionsliste.html

PACE -The Platform for Accelerating the Circular Economy (2019): A New Circular Vision for Electronics. World Economic Forum http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Pimm, S. L. u.a. (2014): The biodiversity of species and their rates of extinction, distribution, and protection. Science 344 (Issue 6187)

Probst, W. (2009): Stoffkreisläufe. UB 349, S.2-11. Seelze: Friedrich

Probst, W. (2010): Die Schlange im Paradies – Invasionen auf Inseln. UB 354, Seelze: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2020): Der grüne Pelz. https://www.wilfried-probst.de//der-gruene-pelz/

Probst, W. (2020): Schwarze Erde – Möglichkeiten der Kohlenstoffspeicherung im Boden beurteilen. UB 457, S. 26-31.Hannover: Friedrich

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Ruppert, W. (2021): Zoonosen. Unterricht Biologie Kompakt 466 (Jg.45). Hannover: Friedrich

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Schmidt-Bleek, F. (1997) : Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv

Seddon, P. (2017): A history of assisted colonization https://www.youtube.com/watch?v=pOgpyeGPzF8&feature=youtu.be

Shah, S. (2020): Woher kommt das Corona-Virus? Le Monde diplomatique vom 12.03.2020

Smil, V. (2019): Growth – From microorganismes to megacities. Cambridge MA.: MIT-Press

Trommer, G. (1994): Didaktisch differenzierte Leitbilder – ein Drei-Umwelten-Modell zum pägagogischen Umgang mit Natur und Landschaft. Workshop Ökologische Leitbilder, Cottbus 9.6.1994. TUC Aktuelle Reihe 6/94:57-62

Ümüt Halik, TU Berlin: Planung und Management städtischer Freiflächen in Ürümqi. (Memento vom 19. Februar 2005 im Internet Archive) In: TU International, 46/47, Dezember 1999, (PDF-Datei, 4 S.).

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

WEF (2019): A new circular vision for electronics. Time for a global reboot. http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

Weizsäcker, E. U. von (1995): Faktor Vier – Doppelter Wohlstand – halbierter Naturverbrauch. Stuttgart: Droemer-Knaur, https://de.wikipedia.org/wiki/Klimarahmenkonvention_der_Vereinten_Nationen

https://neobiota.bfn.de/grundlagen/neobiota-und-invasive-arten.html

http://eh-da-flaechen.de/

https://www.thejakartapost.com/life/2019/12/31/grown-from-necessity-vertical-farming-takes-off-in-ageing-japan.html

https://www.thejakartapost.com/life/2018/05/10/growing-up—why-the-uaes-first-vertical-farm-could-be-a-regional-gamechanger.html

https://wiki.bildungsserver.de/klimawandel/index.php/Treibhausgasemissionen

https://www.vbio.de/themenspektrum/biodiversitaet/insektenschwund/

https://www.heise.de/hintergrund/Afrikas-Gruenstreifen-3664743.html?seite=2

https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

https://www.agritecture.com/blog/2017/11/29/move-over-skyscrapers-this-plantscraper-can-feed-5000-a-year

https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

https://www.zdf.de/nachrichten/politik/one-planet-summit-afrika-gruene-mauer-wueste-macron-100.html

Im Griff von SARS CoV 2

LINK-NAME LINK-NAME

„Mir ist die Anwesenheit von Anhängern der sozialistischen Sekte in unserer Provinz gemeldet worden, welche, mit geheimnisvollen Mixturen und übelriechenden Salben versehen, unsere arbeitsame Bevölkerung infizieren. Mit winzig kleinen und äußerst zerbrechlichen Ampullen ausgestattet, haben dieselben in Favara bereits eine starke und weit verbreitete Grippe ausgelöst (… …), und zwar mittels der Verbreitung von Keimen, die eine Mundschwamm-Epidemie auslösen können. Ich mache Sie darauf aufmerksam, daß diese Keime überaus leicht erkennbar sind: sie sind von leuchtend roter Farbe, jeder von ihnen besitzt 2.402 Füßchen. Für ihre Vernichtung muß Sorge getragen werden, weil sie sich außerordentlich schnell vermehren. In der Gewißheit, daß Sie sich der Gefahr bewußt sind und alle Maßnahmen für ein Einschreiten treffen, fordere ich Sie auf: gehen Sie ans Werk! S. E. der Präfekt (Vittorio Marascianno)“

Das schrieb der sizilianische Schriftsteller und Regisseur Andrea Camilleri in seinem 1998 erschienenen Roman „La concessione del telefono“; in deutscher Übersetzung 1999 beim Klaus Wagenbach Verlag mit dem Titel „Der unschickliche Antrag“ herausgegeben. Man könnte fast meinen, Camilleri hätte dabei an die Coronaviren gedacht. Das ist nicht ganz unmöglich, denn man kennt sie seit 1960. Der Roman allerdings spielt im Sizilien des ausgehenden 19. Jahrhunderts.

Allerdings konnte Camilleri nicht ahnen, dass die Corona Pandemie gute 20 Jahre später die Weltöffentlichkeit beherrschen würde, wie keine Epidemie, ja wie kein katastrophales Ereignis zuvor. Selbst die Klimakrise tritt dagegen zurück. Sie hat bisher bei weitem nicht so viele gleichlaufende Reaktionen in fast allen Ländern der Erde bewirkt, obwohl die Folgen vermutlich deutlich katastrophaler sein werden.

Coronaviren

Coronaviren haben einen Durchmesser von ca. 125 nm. Sie sind von einer mit zahlreichen Fortsätzen (Spikes) besetzten Proteinlipidmembran umgeben, an denen die Andockstellen für die entsprechenden Proteine der Wirtszellen liegen. Das genetische Material ist eine einsträngige RNA.

Coronaviren, kugeligen Gebilde mit den vielen Fortsätzen (Spikes), die sie im elektronenmikroskopischen Bild wie eine Sonne mit Corona erscheinen lassen, sind seit den 1960er Jahren als Erreger von Tierkrankheiten aus Großbritannien und den USA bekannt. 1968 erhielten sie ihren Namen. Aber erst 2003 wurde mit der SARS-Epidemie (severe acute respiratory syndrom) deutlich, dass sie auch für Menschen wirklich gefährlich werden können.

Unter den für menschliche Krankheiten verantwortlichen Viren gehören Coronaviren mit ihren 125 nm Durchmesser zu den größten. Mit 30.000 Nukleotiden ist ihre einsträngige RNA auch länger als die anderer RNA-Viren. Ein besonderer Reparaturmechanismus schützt diese lange RNA-Kette vor zu vielen falschen Replikationen.

Von Fledermäusen oder von Schuppentieren?

Wie andere Viren können Corona-Viren rekombinieren, wenn unterschiedliche Viren in einer Wirtszelle zusammentreffen. Aber eine Besonderheit der Corona-Viren, die sie besonders gefährlich macht ist, dass es nicht selten vorkommt, dass auch sehr unterschiedliche, genetisch weit voneinander entfernte Corona-Viren in einer Zelle zusammenkommen können und dass dann sehr gefährliche Rekombinanten entstehen. Besonders berüchtigt als Quelle solcher neuen Mischungen sind Fledermäuse, bei denen in einer Art bis zu zwölf verschiedene Coronaviren nachgewiesen werden konnten (Luis et.al 2013 nach Cyranoski 2020). Dabei haben die Fledermäuse offensichtlich einen Mechanismus entwickelt, der sie vor dem Ausbruch durch diese Viren hervorgerufener gefährlicher Krankheiten schützt.

Die zwei bisher aufgetretenen für den Menschen wirklich gefährlichen Coronaviren – SARS-CoV und MERS-CoV (middle east respiratory syndrom) – kommen beide von Fledermäusen. Deshalb liegt die Vermutung nahe, dass auch SARS-CoV2, der Erreger der derzeitigen Pandemie, von Fledermäusen abstammt, zumal es zwischen einem Fledermausvirus und SARS-CoV2 eine 96-%ige genetische Übereinstimmung gibt. Diese naheliegende Vermutung hat jedoch einen Haken: den Coronaviren in Fledermäusen fehlt allen an ihren Spikes eine besondere Proteineinheit (s.u.!), welche den Eintritt in menschliche Schleimhautzellen extrem erleichtert. Diese Proteinstruktur kommt aber bei Coronaviren von Schuppentiere (Fam. Manidae) vor. Die genetische Übereinstimmung des Schuppentier-Virus mit SARS-CoV2 beträgt jedoch nur 90 %. Neuere Arbeiten legen die Vermutung nahe, dass die virulenten Erreger schon vor 140 Jahren von Fledermäusen auf Schuppentiere wechselten. Während sie bei den Fledermäusen die gefährliche Proteinstruktur verloren haben, blieb diese beim Schuppentier erhalten (Cyranoski 2020).

Die unterschiedlichen Krankheitsbilder von  Covid 19

SARS-CoV Viren infizieren die Schleimhäute von Nasenraum und Rachen als auch die des tieferen Lungengewebes. Im ersten Fall kommt es zu leichten bis mittelschweren Erkältungserscheinungen, im zweiten Fall kann die Erkrankung tödlich verlaufen. Auch Patienten,  die zunächst an der leichten Form erkranken, können später noch eine gefährliche Lungeninfektion bekommen, und zwar dann, wenn ihr Immunsystem nicht bei der ersten Infektion Abwehrmechanismen entwickelt, die eine weitere Infektion verhindern. SARS-CoV und MERS-CoV können Rachen- und Nasenschleimhäute nicht infizieren. Mit der Infektion von Nasen- und Rachenschleimhäuten hängt auch zusammen, dass SARS-CoV2 Viren so leicht durch Tröpfcheninfektion übertragen werden können.

Die Speicheltröpfchen sind in Wirklichkeit – zum größten Teil – viel kleiner.

In den Speicheltröpfchen Infizierter befinden sich SARS CoV2-Viren

Ein besonderer Türöffner

Neben der leichten Übertragung durch Tröpfcheninfektion aus den oberen Atemwegen einer infizierten Person macht die Viren besonders gefährlich, dass sie die Membran der Schleimhautzellen sehr leicht überwinden und ihren Inhalt in diese Zellen befördern können. Dafür verantwortlich ist einmal die 8-10 mal höhere Affinität der Spikes zu der Andockstelle (Angiotensin converting enzym 2 ACE2, Wrapp et al. 2020), zum anderen eine besondere Proteinstruktur auf den Spikes, die nicht nur – wie bei den anderen Coronaviren – ein Andocken an bestimmte Proteine der Zellmembranen ermöglicht, sondern auch mit einem weiteren weitverbreiteten Enzym der Zelloberflächen von Epithelzellen, dem Furin, reagiert. Diese Protease spaltet den Kopf der Spikes von der restlichen Struktur ab und ermöglicht dadurch die Freisetzung von Fusionspeptiden, mit deren Hilfe die Proteinlipidmembranen von Virus und Epithelzelle verbunden werden. Ist das Virus erst einmal an eine Zelle angedockt, so ist es sehr wahrscheinlich, dass es auch seinem Inhalt in die Zelle transportieren kann. Wie diese Fusion auf molekularer Ebene genau funktioniert, ist allerdings noch nicht bekannt.

Nach Andocken des Virus an die Wirtszelle spalten Furine den Kopf der Spikes ab und setzen dadurch Fusionspolypeptide frei.
Die Fusionspeptide bewirken eine Verbindung von Virushülle und Wirtszellmembran.
Durch die Verbindung von Virus und Wirtszelle wird die Virus-RNA übertragen.

Mithilfe der Syntheseapparate der Wirtzelle werden die Bestandteile des Virus gebildet und zu neuen Viruspartikeln zusammengesetzt, welche die Wirtszelle verlassen und neue Zellen inizieren können.

Thrombosen und Organschädigungen

Studien aus den Niederlanden und Frankreich weisen darauf hin, dass 20-30 % der anCovid19 erkrankten Patienten Thrombosen entwickeln. Dabei handelt es sich zum Teil um sehr kleindimensionierte Thrombosen in Kapillaren. Eine mögliche Erklärung wäre, dass die Viren Zellen des Gefäßepithels befallen, die auf ihrer Zellmembran ebenfalls ACE2 und Furin tragen. Dadurch könnten die Gefäßinnenwände rauer werden und dies könnte die Bildung von Blutklümpchen begünstigen. Aber auch Effekte der Viren auf das Immunsystem könnten für die Thrombosen verantwortlich sein. Nachgewiesen ist, dass die Corvid19 Viren das Komplementsystem, also die unspezifische Immunantwort, in Gang setzen. Schädigungen von Organen wie Nieren, Leber, Herz und Nervensystem, die ebenfalls mit Corvid19 Infektionen in Verbindung gebracht werden, könnten auch eine Folge solcher Gefäßschädigungen sein.

Impfungen

Als der Erreger der Covid 19 Erkrankung zu Beginn des Jahres 2020 als SARS-CoV 2 identifiziert wurde, begann sofort an vielen verschiedenen Stellen die Entwicklung von und die Suche nach geeigneten Impfstoffen. Nach der Weltgesundheitsorganisation gibt es derzeit (2.Juni 2020) 148 solcher Impfstoffprojekte.

Aktive Schutzimpfung

  • Impfung mit inaktivierten (attenuierten) SARS-CoV-2 Viren
  • Impfung mit gentechnisch modifizierten Viren, die bereits für andere bewährte Impfstoffe verwendet wurden und bei denen man deswegen unerwünschte Nebenwirkungen ausschließen kann, zum Beispiel Vaccinia-Viren (bisher in Impfstoffen gegen Pocken),  humane Adeno-Viren oder Masernviren.
  • Impfung mit aus ausgewählten Genen des Virus in Form von mRNA oder DNA. Nach Injektion in Körperzellen sollen sie diese zur Bildung von ungefährlichen Virusproteinen anregen, die dann den Aufbau des körpereigenen Immunschutzes bewirken. So enthält mRNA-1273  die Erbinformation für einen Bestandteil des Spike-Proteins von SARS-CoV-2. Der Impfstoff bewirkt in Körperzellen die Biosynthese von diesem Protein, das als Antigen wirkt und das körpereigene Immunsystem zur Bildung von Antikörpern gegen das Virus anregt .

Passive Schutzimpfung

Impfung mit Immunglobulinkonzentraten von Personen, die eine Covid 19 Erkrankung überstanden haben. Werden die aus dem Serum isolierten und gereinigten Antikörper einem anderen Coronapatienten injiziert, so erhält er eine „passive Immunisierung“. Diese Impfung wird deshalb teilweise auch als Serum-Therapie bezeichnet. Die übertragenen Antikörper können dabei sofort gegen die Krankheitserreger wirksam werden.

Die Serum-Therapie hat bei der Bekämpfung der Ebola-Epidemie bereits gute Dienste geleistet. Durch ihren Einsatz konnte die Sterblichkeitsrate bei dem Ebolaausbruch im August 2018 in der Demokratischen Republik Kongo um 30 % reduziert werden.

Die passive Schutzimpfung mit Antikörpern aus genesenen Corona-Patienten kommt vor allem für Risikogruppen und für schwer erkrankte Patienten infrage. Sie ist kein Ersatz für eine langfristig wirkende aktive Schutzimpfung, denn sie wirkt in der Regel nur wenige Wochen bis Monate. Es entsteht keine bleibende Immunität gegen den Erreger, da die künstlich zugeführten Antikörper innerhalb von etwa 30 Tagen wieder abgebaut werden.

Spekulationen

Der besonderer Türöffner an den Spikes von SARS-CoV2 ist ein Grund dafür, dass immer wieder spekuliert wird, der besonders gefährliche Keim wäre in einem Labor gezielt hergestellt und absichtlich oder unabsichtlich freigesetzt worden. Dafür gibt es allerdings bisher keinerlei Anhaltspunkte. Aber alleine die Tatsache, dass in Wuhan, der chinesischen Millionenstadt, von der die Epidemie ihren Ausgang nahm, am Wuhan Institute of Virologie seit der SARS-Epedemie von 2003 intesiv an Coronaviren georscht wird, genügt Verschwörungstheoretikern, um hier einen Zusammenhang herzustellen.

Dabei wird auch dem Microsoft-Milliardär Bill Gates, der schon lange vor dem möglichen Ausbruch einer weltumspannenden Pandemie gewarnt hat, eine besonders finstere Rolle zugedacht. Schon vor zehn Jahre kommentierte Gates den überstandenen H1N1-Ausbruch von 2009 mit den Worten: „Wir hatten Glück, dass es nicht schlimmer kam. Denn wir waren fast komplett unvorbereitet.“ Im folgenden wies er in Reden und Artikeln immer wieder auf die Pandemie-Gefahr hin: „Wenn irgendetwas in den nächsten Jahrzehnten mehr als zehn Millionen Menschen tötet, ist das wahrscheinlich ein Virus und nicht ein Krieg“.(2015; nach NZZ 11.04.2020). Diese weise Voraussicht, die sich im Nachhinein als richtig erwies, dient nun Verschwörungstheoretiker dazu, Gates finstere Komplotte zur Errichtung einer Weltdiktatur zu unterstellen. Hat er gar mit chinesischen Virologen zusammengearbeitet mit dem Ziel, als Folge der Maßnahmen gegen die Pandemie eine totale Kontrolle über die Menschheit zu gewinnen? Auch seine Unterstützung der World Health Organisation – nach Ausscheiden der USA mittlerweile der größte Einzelunterstützer – wird in diese Richtung interpretiert.

Im Prinzip ist es tatsächlich problematisch, wenn internationale und nationale staatliche Aufgaben zunehmend von der Unterstützung einzelner Milliardäre abhängig werden. Deshalb ist es sehr schade, dass US-Präsident Trump die Vereinigten Staaten aus der WHO herausnehmen und diese Organisation nicht mehr unterstützen will. Bedenklich ist auch, dass er dies mit ähnlichen Argumenten begründet, wie die Verschwörungstheoretiker: Nachdem er die Maßnahmen Chinas gegen die Coronaepidemie zunächst gelobt hatte, bezichtigt er China nun einer bewussten Täuschung der Weltöffentlichkeit. Der WHO wirft er eine chinafreundliche Politik vor, wohl vor allem, um damit Fehler der eigenen Politik in Sachen Corona zu vertuschen.

Andere Spekulationen, die von allen möglichen „Weltverbesserern“ und Ideologen aufgestellt werden, sind noch wesentlich abstruser. In der TAZ schreibt Arno Frank dazu: „Gefährlich und grotesk wird es, wenn das blinde Huhn beim Stochern drei Körner findet und daraus ein Vollkornbrot backen will:“ (TAZ 23./24.5.2020, S.3).

Weltweite Kooperation

Auch wenn die unter den Begriff „Lock Down“ in vielen Ländern der Erde getroffenen Maßnahmen zur Minderung der Infektionsgefahr nicht immer sinnvoll und manchmal auch überzogen erscheinen mögen, so zeigen sie doch, dass die Menschheit angesichts drohender Gefahren zu gleichsinnigem Handeln in der Lage ist. Es besteht deshalb eine gewisse Hoffnung, dass diese Erfahrungen sich auch auf die Handlungsfähigkeit Hinblick auf den Klimawandel positiv auswirken könnten. Eine erste Chance ergibt sich hier schon bei den gezielten Maßnahmen zur Wirtschaftsförderung. Im Hinblick auf Klimaziele geforderten Veränderungen der Wirtschaftssysteme könnten in der gegenwärtigen Situation durch gerichtete Förderung leichter in Angriff genommen werden.

Quellen

Cyranoski, D. (2020): Profile of a killer virus. Nature 581, pp. 22-26

Cyranoski, D. (2020): Mystery deepens over animal source of coronavirus. Nature 26.2.2020

Cyranoski, D. (2020): The biggest mystery: what it will take to trace the coronavirus source. Nature 5.6.2020

Probst, W., Schuchardt, P. (Hrsg., 2020): Basiswissen Schule Biologie – Abitur. 5. Auflage. Berlin: Duden

Willyard, C. (2020): Coronavirus blood-clot mystery intensifies. Research begins to pick apart the mechanisms behind a deadly COVID-19 complication. Nature 581, p. 250

Wrapp, D. et al. (2020): Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science 367 (6483), pp.1260-1263

3-D Modell des Coronavirus https://insidecorona.net/de/wie-sieht-das-coronavirus-aus/

https://www.merkur.de/welt/corona-symptome-ansteckungsgefahr-inkubationszeit-fakten-definition-lungenkrankheit-covid-19-erklaerung-13591846.html

https://www.bundesgesundheitsministerium.de/coronavirus.html

https://www.lungenaerzte-im-netz.de/krankheiten/covid-19/was-ist-covid-19/

https://de.wikipedia.org/wiki/COVID-19

https://www.fr.de/politik/corona-krise-bill-gates-virus-verbindungen-who-verschwoerung-13759001.html

https://www.nzz.ch/wirtschaft/coronavirus-bill-gates-der-mann-der-die-pandemie-kommen-sah-ld.1551317

https://www.aerzteblatt.de/nachrichten/112990/SARS-CoV-2-Erster-Impfstoff-erzeugt-neutralisierende-Antikoerper-in-Phase-1-Studie

https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-jetzt zwei Auto ,coronavirus-2019-ncov

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://www.aerzteblatt.de/nachrichten/112990/SARS-CoV-2-Erster-Impfstoff-erzeugt-neutralisierende-Antikoerper-in-Phase-1-Studie

https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-jetzt zwei Auto ,coronavirus-2019-ncov

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://www.aerzteblatt.de/nachrichten/112990/SARS-CoV-2-Erster-Impfstoff-erzeugt-neutralisierende-Antikoerper-in-Phase-1-Studie

https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-jetzt zwei Auto ,coronavirus-2019-ncov

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://www.dw.com/de/mit-medikamenten-aus-antik%C3%B6rpern-gegen-corona/a-52804320

https://lehrermarktplatz.de/material/164254/vom-gesprach-zur-pandemie-wie-es-zur-infektion-mit-coronaviren-kommen-kann

Der grüne Pelz

LINK-NAME LINK-NAME

Entstehung

Die Erde bildete sich vor etwa 4,6 Mrd. Jahren. 0,5 bis 1 Mrd. Jahre später traten die ersten Lebewesen auf und schon vor ca.3,5 Mrd. Jahren entwickelten sich die ersten Cyanobakterien, die mithilfe von Sonnenlicht aus Wasser und  Kohlenstoffdioxid Kohlenhydrate und Sauerstoff herstellen konnten. Der Sauerstoff oxidierte Mineralien und löste sich in den Ozeanen. Erst nach etwa 1 Mrd. Jahren waren diese Oxidationsprozesse abgeschlossen und der O2-Gehalt der Atmosphäre begann stark anzusteigen – mit tödlichen Folgen für obligate Anaerobier aber mit einem großen Vorteil für Lebewesen, die zur aeroben Atmung mit Sauerstoff in der Lage waren. Mit Photosynthese und Atmung war die Grundlage für effektive chemische Kreisläufe in der Biosphäre geschaffen.

Seither hat sich die Stoffproduktion durch Photosynthese stetig vermehrt, auch wenn es immer wieder kleinere oder größere Rückschritte gab. Vor etwa 400 Mio J. begann die Besiedelung des Festlandes durch grüne Pflanzen und dieser grüne Pelz überzog von Feuchtgebieten ausgehend immer größere Flächen der Kontinente. Der Pelz wurde auch immer dichter und höher. Die höchsten Bäume können über 100 m  hoch werden und die Pflanzendecke ist vielfach geschichtet. Die Pflanzen wurden durch natürliche Selektion  an immer extremere Lebensbedingungen angepasst, sodass immer trockenere und immer kältere Gebiete  einen grünen Pelz bekamen.

Beschädigungen

Waren in der früheren Erdgeschichte  vor allem  plattentektonisch bedingte Veränderungen der Kontinente, Vulkanausbrüche und Asteroideneinschläge aber auch biogene Veränderungen des CO2-Gehalts der Atmosphäre für Rückschritte bei dieser Entwicklung verantwortlich, so ist es heute die menschliche Zivilisation, durch die der grüne Pelz des Bioplaneten Erde beschädigt wird. Diese Beschädigungen haben mittlerweile ein Stadium  erreicht, das für die menschliche Zivilisation und für die derzeitigen Ökosysteme gefährlich wird. Denn angesichts der großen Populationsdichte der Menschen und des Zivilisationsgrads wird der grüne Pelz der Erde verringert und in seiner Wirksamkeit beeinträchtigt.77% der Landfläche (ohne Antarctica) und 87 % der Meere sind derzeit durch menschliche Aktivitäten verändert worden (Watson, Allen u.a.2018).

  • Städte werden immer größer, Verkehrsnetze immer dichter, Agrarflächen, die mit ihren Monokulturen eine deutlich geringere regulatorische Wirkung haben als natürliche Vegetation, dehnen sich immer weiter aus und lassen das grüne Fell der Erde räudig werden.
  • Die Kapazität des grünen Pelzes wird im Hinblick auf eine ausgeglichene Stoffbilanz des Bioplaneten Erde dadurch überschritten, dass fossile Energieträger zur Energiebereitstellung verbrannt und zur (Kunst-)Stoffproduktion genutzt werden. Besonders die starke Zunahme des Treibhausgases CO2 führt zu einer deutlichen Klimaerwärmung.
  • Der Eingriff in den Stickstoffkreislauf durch anthropogene Umwandlung des Luftstickstoffs (N2) in reaktionsfreudige Stickstoffverbindungen kann sich über verminderte Biodiversität und Veränderung der Atmosphäre (Verringerung der UV-Licht filternden Ozonschicht) negativ auswirken.

Diese Veränderungen stellen für den Bioplaneten keine existentielle Gefahr dar, das Leben auf der Erde wird diese Veränderungen ebenso überstehen, wie es andere oft noch viel drastischere Ereignisse im Laufe der Erdgeschichte überstanden hat. Für die menschliche Zivilisation in ihrer heutigen Form stellen sie aber eine existentielle Bedrohung dar. Für eine nachhaltige Entwicklung des Bioplaneten als Lebensraum für die Menschen ist der Erhalt des grünen Pelzes deshalb von entscheidender Bedeutung.

Städte

Sao Paulo,12,3 Mio Einwohner (Quelle: pixibay, joelfotos)

Mit der zunehmenden Bevölkerung werden Städte immer größer und  überdecken immer größere Flächen (Liu u.a.2020). Herkömmliche Städte sind nicht grün, sie haben Oberflächen, die vorwiegend aus Beton, Steinen, Glas und Asphalt bestehen. Die photosynthetische Stoffproduktion ist niedrig, die CO2-Produktion ist viel höher als der CO2-Verbrauch, C-Speicherug in Vegetation und Boden ist gering. Ebenso gering im Vergleich zu natürlichen Ökosystemen ist das Rückhaltevermögen für Regenwasser, sodass es bei den durch Klimawandel vermehrten Starkregen immer häufiger zu Überschwemmungen kommt. Pflanzliche Oberflächen verdunsten Wasser und produzieren Verdunstungskälte. Steine und Beton speichern Wärme. Beides führt dazu, dass  das Stadtklima wärmer ist als das Klima in der Umgebung. Dabei spielt auch eine Rolle, dass der Luftaustausch mit der Umgebung durch die Gebäude behindert wird.

Mögliche Verbesserungen:

Stichworte

Grüne Stadt: Dächer; Fassaden; Boden; Schichten: Kraut, Strauch, Baum

Blaue Stadt: Teiche; Zisternen; Überflutungsflächen; veränderte (entrohrte, mäandrierende) Fließgewässer

Vernetzung: Grünschneisen; Verbund begrünter Dachflächen

Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Wenn die Umgebung aus intensiv bewirtschafteten Ackerflächen besteht, kann deren Umwandlung in gartenreiche Wohngebiete trotzdem Vorteile bieten (Reichholf 2018). Für die heutigen, von dicht stehenden Hochhäusern dominierten Großstädte ist das aber keine realistische Alternative, da die benötigten Flächen viel zu groß wären. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Neben der Flächenvergrößerung könnte auch die Ausgestaltung verbessert werden. Dickere Bodenschichten verbessern die Stoffbilanz, die Wasser- und Kohlenstoff-Speicherung.  Zisternensysteme können für die Bewässerung während Trockenperioden genutzt werden und den Wasserabfluss bei Starkregen mindern.

Begrünte Dachflächen könntemn durch Brücken verbunden werden.

Vernetzte Dachgärten (Entwurf W. Probst, 2020)

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Für diese traditionelle  Fassadenbegrünung sind vor allem Lianen wie Efeu oder Wilder Wein (Parthenocissus) verantwortlich, die sich mit besonderen Haftorganen an den Fassaden festhalten – ein Grund dafür, dass sich viele Hausbesitzer wegen der dadurch erschwerten Fassadenrenovierung davon abhalten lassen, eine solche  Wandbegrünung zu erlauben. Auch die Furcht vor Beschädigungen durch die wuchernden, oft auch in Risse und Öffnungen eindringenden Lianen spielt dabei eine Rolle. Diese Probleme können durch vorgebaute Rankgerüste teilweise vermindert werden. Eine staatlich finanzierte Förderung der Fassadenbegrünung, wie sie ähnlich bei Fassadendämmungen sehr erfolgreich angewendet wird, könnten ein wirkungsvoller Anschub sein. Besonders wirkungsvoll könnte eine solche Förderung werden, wenn flächenhafte Begrünungsmodule zur Verfügung stünden, die mit einfachen Mitteln an Fassaden angebracht werden könnten und die durch Anschluss an eine Bewässerungsanlage wartungsarm wären. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden.

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen. Große Gebäudekomplexe könnten durch grüne Brücken vernetzt werden. Verkehrswege, insbesondere Straßen und Schienenverkehr, könnten wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde, So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Stefano Boeri 2015).

Verkehrswege

Verkehrswege, insbesondere Straßen für den KFZ-Verkehr, tragen einmal durch Versiegelung zur Reduktion des grünen Pelzes bei, zum anderen  zerschneiden sie Ökosysteme, führen zur Verinselung und  darüber insbesondere zur Schädigung von Tierpopulationen und damit zur Verringerung der Biodiversität. Schließlich belasten die Abgase der Kraftfahrzeuge die Luft.

Autobahn (Quelle: pixabay: Alexas_Fotos)

Mögliche Verbesserungen:

Stichworte

  • Zerschneidungseffekte minimieren (Brücken über wertvolle Landschaftsteile, grüne Brücken zur Minderung von Zerschneidungseffekten, Tunnel),
  • Begleitgrün verbessern (Straßenränder, Randstreifen,Verkehrsinseln),
  • nicht mehr benötigte Verkehrsflächen entsiegeln,
  • Verkehrsflächen unter die Erde verlegen; nicht nur Hindernisse (Berge, Gewässer) sondern auch besonders schützenswerte Landschaften untertunneln,
  • emissionsarme Verkehrsmittel nutzen.

Je dichter die Besiedelung, desto dichter sind nicht nur Städte, Siedlungen  und Industrieanlagen, desto dichter ist auch das Netz von Verkehrswegen, insbesondere Straßen und Autobahnen (in Deutschland  derzeit nach Erhebung des Umweltbundesamt knapp 20000 km², das entspricht rund 5,5% der  Landesfläche). Das wirkt sich aber nicht nur über den Flächenverbrauch sondern vor allem über den Zerschneidungseffekt nachteilig auf die Funktion von Ökosystemen aus. Mehr noch als Pflanzenarten sind Tierpopulationen durch die dadurch bedingte Verinselung betroffen. Auch die direkte Tötung von Tieren durch den Verkehr spielt eine Rolle. Indirekt wirkt sich dies über die Bestäuber und die Verbreitung von Früchten und Samen auf die Vegetation aus.

Eine Verbesserung kann einmal durch geeignetes Straßenbegleitgrün erreicht werden (Kühne/Freier 2012). Vor allem aber kann die trennende Wirkung von Verkehrsflächen durch Brücken, sowohl Brücken über schützenswerte Landschaftsteile als auch verbindende Grünbrücken, und Tunnel erreicht werden. Schutzgräben oder Zäune können in Kombination mit kleinen Tunneln insbesondere  Amphibien bei ihren Laichwanderungen schützen (Krötenzaun, Krötentunnel).   

Eine Grünbrücke über die A50 bei Woeste Hoeve in den Niederlanden.. (Quelle: Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=618784)

Natürlich ist das Hauptproblem die hohe Verkehrsdichte und die Emissionen der Verkehrsmittel. Sie wird einmal durch den Individualverkehr, zum anderen durch den Güterverkehr verursacht. Beide haben in den letzten Jahrzehnten ständig zugenommen. Eine größere Verlagerung dieses Verkehrs auf die Bahn wird schon lange als Ziel formuliert, ließ sich aber bisher politisch nicht durchsetzen. Auch eine Förderung dezentraler Produktion könnte der ständigen Zunahme des Güterverkehrs entgegenwirken.                              

Landwirtschaft/Nahrungsmittelerzeugung

Moderne Landbewirtschaftung hat zwar zu immer höheren Erträgen pro genutzter Fläche geführt, die Gesamtstoffbilanz, in die man den Verbrauch von fossilen Energieträgern einrechnet, ist aber immer schlechter geworden. Nach Smil (2019) wird heute pro Ackerfläche 10x soviel produziert wie vor 100 Jahren aber dafür wird 90x soviel Energiezufuhr benötigt.

Riesige Monokulturen, Pestizid- und Düngemitteleinsatz erhöhen zwar die landwirtschaftliche Produktion, vermindern aber insgesamt die Leistungsfähigkeit des grünen Pelzes und schädigen Böden und ihre Kohlenstoff-Speicherfähigkeit. Artenarme, mit Pestiziden behandelte Agrarflächen sind die Hauptursache für den starken Rückgang der biologischen Vielfalt. Die Massentierhaltung ist nicht nur ein ökologisches sondern auch ein ethisches Problem.

Weizenfeld nach der Ernte (Quelle: pixabay: ulleo)

Mögliche Verbesserungen:

Stichworte

  • Beachtung ökologischer  Zusammenhänge (Kreislaufwirtschaft, integrierter Pflanzenschutz)
  • artgerechte Nutztierhaltung
  • Vernetzung durch Feldhecken und Randstreifen
  • Feldgehölze und andere artenreiche Biotope als ökologische Inseln
  • Agroforestry
  • Vertical Farming
  • Landwirtschaft 4.0 (KI)

Das gewichtigste Argument für eine immer stärkere Rationalisierung und Industrialisierung der Landwirtschaft ist, dass nur dieser Weg für die ständig steigenden Bedürfnisse der wachsenden Erdbevölkerung die notwendigen Nahrungsmittel und weiteren Rohstoffe liefern kann. Dieses Argument greift aber insofern nicht, als die derzeitige Landbewirtschaftung auf irreversiblem Verbrauch basiert, Verbrauch von fossilen Energieträgern, Verbrauch von Wasser, Verbrauch von nicht regenerierbaren Düngemitteln (insbesondere Phosphat, Greuling 2011), Verbrauch von Böden, Verbrauch von selbstregulierenden Ökosystemen wie z.B. Regenwäldern.

Systeme, die auf Verbrauch basieren, sind aber nur nachhaltig, das heißt, für längere Zeit funktionsfähig, wenn die verbrauchten Ressourcen ständig regeneriert werden können, Dies ist gegenwärtig eindeutig nicht der Fall. Deshalb ist eine Veränderung  vorhersehbar. Sie kann nur ohne Katastrophen stattfinden, wenn sie  basierend auf wissenschaftlichen Erkenntnissen der Ökologie vorgenommen wird.

Das kann natürlich nicht bedeuten, dass man zu Methoden des Neolithikums zurückkehrt. Eine den Produktionserfordernissen der Gegenwart genügende Landbewirtschaftung, die gleichzeitig nachhaltig ist, bedeutet nicht weniger Technik sonder mehr Technik, genauer gesagt mehr intelligente Technik.

Sehr große, von Monokulturen bestandene Flächen erlauben den Einsatz von riesigen Maschinen und  haben dazu geführt, dass mit wenigen menschlichen Arbeitskräften große Stoffmengen produziert werden können. Gleichzeitig werden dadurch aber lebenswichtige Ressourcen, Artenvielfalt, Böden, Dünger und Energie liefernde Stoffe „verbraucht“ und andere Ökosysteme durch Eintrag von Düngemitteln und Schadstoffen geschädigt.

Das Grüne Band Deutschland bezeichnet einen Geländestreifen entlang der ehemaligen innerdeutschen Grenze, der als arten- und biotopreicher Grüngürtel erhalten bleiben soll und der zudem wertvolle Biotope miteinander verbindet. Wenn von diesem grünen Band weitere Grüngürtel ausgehen würden, könnte es Ausgangspunkt für eine landesweite oder sogar europaweite Netzstruktur werden.

Würden die Monokulturen durch ein Netz naturnaher linearer Elemente wie Feldhecken und Wildpflanzenstreifen unterbrochen, könnte dieser Verbrauch zwar gemindert werden, gleichzeitig wäre aber eine Bewirtschaftung mit den derzeit üblichen Methoden nicht möglich oder viel aufwändiger. Mit kleineren, intelligenten Maschinen, wie sie in einfacher Form  heute schon allgemein zum Staubsaugen oder Rasenmähen eingesetzt werden, wäre das aber durchaus denkbar. Solche intelligenten, lernfähigen Roboter könnten – mit Luftbildern von Drohnen oder auch Satelliten versorgt – sehr gezielt arbeiten. Zusammen mit der  Roboter eigenen  Sensorik würde eine gezielte und damit sparsamere Unkrautvernichtung, Schädlingsbekämpfung, Düngung und Bewässerung möglich. Statt flächendeckender Düngung könnten gezielt nur solche Teilbereiche gedüngt werden, die tatsächlich unterversorgt sind. Pestizide könnten nur auf tatsächlich befallene Pflanzen  gesprüht werden, dasselbe gilt für die Bekämpfung von Unkräutern. Statt  Riesentraktoren und Megamaschinen würden dann viele kleine Roboter die Ackerflächen bearbeiten. Eine solche von künstlicher Intelligenz bestimmte Agrarwirtschaft wird auch als Landwirtschaft 4.0 bezeichnet.

Alternative, Ressourcen schonendere Formen der Landbewirtschaftung wie Mischkulturen und  Agroforestry,  spielen heute nur in Nischen und Subsistenzwirtschaften eine Rolle, da sie sehr arbeitsintensiv sind. Durch Einsatz intelligenter Technik könnten manuelle Tätigkeiten durch Roboter und Regelsysteme ersetzt und damit solche nachhaltigen Wirtschaftsformen rentabler werden.

Eine weitere zukunftsweisende Form zur Produktion von Nahrungsmitteln und anderen nachwachsenden Rohstoffen wird mit dem Begriff „Vertical Farming“  bezeichnet. Dadurch könnte der Flächenverbrauch der Produktion stark verringert werden. Schon auf der Internationalen Gartenschau in Wien 1964 wurde ein von dem Maschinenbauingenieur Othmar Ruthner konstruiertes Turmgewächshaus gezeigt. Weitere Verbreitung dieser Idee sorgte der New Yorker Professor für Umweltgesundheit und Mikrobiologie Dickson Despommier, der mit seinen Studenten ab 1999 entsprechende Ideen  zunächst für die Nahrungsmittelversorgung der 50000 Einwohner Manhattans entwickelte. Ausgangspunkt waren Überlegungen zum möglichen Gemüseanbau auf Dachflächen. In der Weiterentwicklung  wurden Hochhäuser geplant, die insgesamt der Pflanzenkultur dienen sollen. In jedem Stockwerk eines solchen  Hochhauses sollen Pflanzen auf optimale Weise automatisch gesteuert und reguliert kultiviert werden. Gleichzeitig sind diese Kulturen in  Kreislaufsysteme, insbesondere der  Wasserwiederverwendung und Abwasseraufbereitung, eingebunden (Despommier 2011).

Das Prinzip „Wachsen lassen“

Wenn  die möglichst optimale Förderung der Vegetation als wichtigstes Naturschutzziel im Sinne einer für die menschliche Zivilisation nachhaltigen Entwicklung des Bioplaneten anerkannt wird, müssen Pflanzenwachstum und Vegetationsentwicklung so gut wie möglich gefördert werden. Das bedeutet, dass man Pflanzen überall dort wachsen lässt, wo sie nicht wichtige Funktionsabläufe stören.

Die Bearbeitung von Kulturflächen ist in vielen Fällen notwendig. Wenn man eine Wiese in Mitteleuropa nie mehr mäht, wird daraus in ein, zwei Jahrzehnten ein Gebüsch und in einem Jahrhundert ein Hochwald. Einen Acker muss man regelmäßig bestellen, abernten, düngen und auch spritzen, um ernten zu können.  Aber wie sieht es mit den Rändern und den Grenzen zwischen den verschiedenen Nutzungsflächen aus? Hier besteht für den Naturschutz ein riesiges Potenzial, das für den Naturhaushalt vermutlich ergiebiger ist, als die in ihrem Flächenanteil sehr beschränkten Naturschutzgebiete. Außerdem hilft der Randschutz, verinselte naturnahe Flächen zu vernetzen. Eine vielversprechende Initiative, welche diese Idee verfolgt, ist das „Konzept der Ehda-Flächen“. Initiator und Träger dieses Projektes ist das Institut für Agrarökologie des Landes Rheinland-Platz (IfA). In den  Stadtkernen betrifft dies Parkanlagen, aufgegebene Verkehrsflächen, Brachflächen, die vorübergehend nicht bebaut sind, Randstreifen  und Verkehrsinseln, die man zeitweilig der Spontanvegetation überlassen kann. Auch die Grünflächen um öffentliche Gebäude wie Krankenhäuser, Verwaltungs- und Regierungsgebäude liefern große, bisher nicht sinnvoll genutzte Flächen.

Ein besonders großes Potenzial stellen Privatgärten dar, die meist in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf , was gepflanzt wurde. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Durch solche Maßnahmen gehen sehr viele potenzielle Flächen für einen ökologisch wirkungsvollen „grünen Pelz“ verloren.

Einige Regeln, die helfen können, aus einem Garten eine ökologisch wertvolle Grünfläche zu machen:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.
Wildwuchs an der Gartengrenze
Wildwuchs an der Gartengrenze (Großblutige Königskerze – Verbascun densiflorum)

Quellen

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Delwiche, C., F., Cooper, E., D. (2015): The evolutionary origin of terrestrial flora. Current Biology25, S. R899 – R919

Dasgupta,  P. (2020): Interim Report – The Dasgupta Review: Independent Review on the Economics of Biodiversity. Crown copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882222/The_Economics_of_Biodiversity_The_Dasgupta_Review_Interim_Report.pdf

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Glatron, S., Granchamp, L. (eds. , 2018) : The urban garden city. Springer

Greuling, H. (2011): Am Phosphor hängt das Schicksal der Menschheit. Die Welt bewegen. Berlin: Axel Springer SE https://www.welt.de/dieweltbewegen/article13585089/Am-Phosphor-haengt-das-Schicksal-der-Menschheit.html

Haft, J. (2.A. 2019): Die Wiese – Lockruf in eine geheimnisvolle Welt. München: Pengiun

Hendershot, J., N. u.a. (2020): Intensive farming drives long-term shifts in avian comunity composition. Nature 579, p.393-396

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability. DOI: 10.1038/s41893-020-0521-x

Probst, W. ,Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. Unterricht Biologie 425. Seelze: Friedrich

Reichholf, J. H. (2018): Schmetterlinge: Warum sie verschwinden und was das für uns bedeutet. München: Hanser

Schilk, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Smil, V. (2019): Growth – From microorganismes to megacities. Cambridge MA.: MIT-Press

Watson, J. E. M., Allen, J. A. U:A: (2018): Protect the last of the wild. Nature 563, pp. 27-30

http://pub.jki.bund.de/index.php/JKA/article/view/2201/2585

https://umwelt.hessen.de/s/default/files/media/hmuelv/ackerrandstreifen.pdf

https://mashable.com/article/green-cities-china/?europe=true

https://www.floornature.de/jean-nouvel-und-die-gruenen-apartments-one-central-park-in-sidney-11253/

De Vriesentopf – Spontanvegetation im Blumentopf in Erinnerung an De Vries‘ Sanctuarium

LINK-NAME LINK-NAME

Kunstfrevel

Beim Pragsattel in Stuttgart – eine der verkehrsreichsten Stellen der Stadt – war bis vor kurzem eine landschaftsarchitektonische Installation des niederländischen Konzeptkünstlers Herman de Vries zu sehen. Der Künstler hatte sein „Sanctuarium“ anlässlich der Internationalen Gartenbauausstellung 1993 Stuttgart auf den Weg gebracht. Es handelt sich um ein knapp 100 m² großes, von einem stählernen Staketenzaun mit vergoldenen Pfeilspitzen umgebenes Rondell. Die Idee des Künstlers: diese Fläche sollte völlig frei von menschlichem Einfluss bleiben. „Die Kunst ist aber nicht an erster Stelle im Entwurf des Stahlzauns und seiner Ausführung zu sehen. Das ist der Rahmen. Das wichtigste findet innerhalb dieses Zaunes statt. Es sind die Pflanzen, die sich da ansiedeln, …“ (de Vries 1995 nach Wikipedia).

1993 wurde diese Kunstaktion in der Öffentlichkeit durchaus kritisch wahrgenommen – was sollte sich hier schon entwickeln außer „Unkraut“? Tatsächlich hat sich aber im Laufe der Jahrzehnte ein durchaus hübsch anzusehendes, dichtes, kleines Gehölz entwickelt, mit Rotem Hartriegel und anderen Sträuchern, Hunds-Rosen und alles umrankenden Waldreben, eine wirkliche Oase in der Verkehrslandschaft. Im März vergangenen Jahres wurde die Vegetation vom Garten-, Friedhofs- und Forstamt (GFF) der Stadt Stuttgart mit der Begründung entfernt, dass „die Entwicklung zum Wald durch regelmäßiges Zurückschneiden der Spontanvegetation auf das Ausgangsstadium verhindert werden soll“ (Zitat von der Pressestelle der Stadt Stuttgart nach Stuttgarter Nachrichten vom 25. März 2018).

Diese Rodung konnte man allerdings nicht als Rückschnitt bezeichnen, denn die Pflanzen wurden wirklich bis auf den Wurzelansatz vollständig entfernt.

Der Künstler hat gegen diese Abholzaktion der Stadt Stuttgart protestiert und viele Aktivisten haben sich dem Protest angeschlossen und sogar Anzeige „wegen Vandalismus“ gegen das Gartenamt erstattet. Da es sich dabei um die Beseitigung eines offiziell akzeptierten und vom Künstler genau beschriebenen Kunstwerkes handelt, erscheint dies berechtigt und hat durchaus Aussicht auf Erfolg.

Naturfrevel

Der Kunstfrevel ist eine Sache. Ich finde allerdings noch bedenklicher, dass es erst einer spektakulären Kunstinstallation bedarf, um Protest gegen die Vernichtung von Spontanvegetation hervorzurufen. Gerade die Ämter, die für das Grün in der Stadt zuständig sind, sollten überall dafür sorgen, dass Natur eingeschaltet und nicht ausgeschaltet wird. Wildwuchs sollte nur dort beschnitten, zurückgedrängt oder vernichtet werden, wo dies aus funktionalen Gründen – und nicht aus einer falsch verstandenen Ordnungsliebe heraus – notwendig ist (vgl. In diesem Zusammenhang auch das sogenannte „Konzept der Ehda-Flächen“ das Ende 2018 als offizielles Projekt der UN Dekade biologische Vielfalt ausgezeichnet wurde) . Das Stuttgarter Sanctuarium ist im Übrigen ein gutes Beispiel dafür, dass sich in den Städten für Klima und Naturhaushalt wertvolle Vegetation mit sehr geringem Kostenaufwand etablieren lassen würde. Statt aufwändiger Pflanzaktionen könnte man einfach kleine Areale sich selbst überlassen, dann würde sich dort mit der Zeit eine Gehölzvegetation einstellen, die dem Standort angepasst ist und keiner besonderen Pflege bedarf. Um zu verhindern, dass ein flächendeckender „Urwald“ entsteht, könnte man die Grenzen solcher Ökoinseln genau festlegen – ohne aufwändige und sicher relativ teure Umzäunungen.

Das Stuttgarter Sanctuarium wurde 25 Jahre alt. Hätte man der Entwicklung ohne weiteren Eingriff weitere 25 Jahre zugeschaut, wären vermutlich tatsächlich relativ hohe Bäume entstanden von denen irgendwann möglicherweise eine Verkehrsgefährdung hätte ausgehen können – wie dies bei allen Bäumen an Wegen, Straßen und in Siedlungen vorkommen kann. Auch nicht vertretbare Sichtbehinderungen für die Verkehrsteilnehmer wären denkbar. In solchen Fällen müsste ein Eingriff natürlich jederzeit möglich sein.

De Vriesentöpfe

Um das Bewusstsein für Regenerationsfähigkeit der Natur zu stärken und das Konzept des „Wachsen lassens“ in Siedlungsräumen und Kulturlandschaften weiter zu verbreiten, möchte ich zu einem Experiment anregen, das man nach der Aktion des Künstlers und Gärtners Hermann de Vries als „De Vriesentopf“ bezeichnen könnte.

Ende Februar 2017 haben wir auf unserer Terrasse – wie schon die Jahre zuvor – einen großen Blumentopf mit Garten- und Komposterde gefüllt und mit Gartenkresse eingesät und dann etwa zwei Monate lang Kresse geerntet. Dann waren die Kressepflanzen trotz regelmäßigen Abzupfens schon zur Blüte und Frucht gekommen und nicht mehr so gut für die Küche geeignet. Zwischen den gerupften Kressestängeln begannen andere Pflanzen zu wachsen. Zunächst waren das vor allem – ebenfalls essbare – Vogel-Sternmieren und Persischer Ehrenpreis. Wir haben den Topf dann einfach stehen lassen und Anfang August hatte sich eine sehr vielseitige Pflanzengemeinschaft entwickelt.

Spontanvegetation im Blumentopf am 2. August 2017 mit Weiß-Klee, Behaartem Knopfkraut, Kriechendem Fingerkraut, Steifem Sauerklee, Hopfen-Schneckenklee, Kanadischem Berufkraut, Zypergras-Segge und Ruten-Hirse
Spontanvegetation im Blumentopf am 6. Oktober 2017. Besonders hübsch an diesem Herbstaspekt sind die zarten Fruchtstände der Ruten-Hirse

Wir haben dann in die weitere Entwicklung den ganzen Winter nicht eingegriffen und im nächsten Jahr 2018 mit seinem sehr trockenen und warmen Sommer ebenfalls nur gegossen aber keine anderen Eingriffe vorgenommen. Die Fotos dokumentieren die Entwicklung unseres De Vriesentopfes bis zum Januar 2019 .

Spontanvegetation im Blumentopf am 5. April 2018. Man sieht vor allem die Blätter vom Weiß-Klee, außerdem beginnen zwei Seggenarten zu treiben.

Im April und im Mai wachsen in dem Topf schnell verschiedene Pflanzenarten empor. Die meisten finden sich irgendwo in unserem Garten aber nicht alle. Vor allem mit einer Segge kann ich zunächst – bevor sich die Blütenstände zeigen – nichts anfangen. Dann stellte sich heraus, dass es sich um die Hasenpfoten-Segge handelt, die ich in unserem Garten noch nie gesehen habe und die mir auch in der weiteren Umgebung bisher nicht aufgefallen ist.

Spontanvegetation im Blumentopf am 10. Mai 2018. Außer den Margeriten sieht man die gerade sich öffnenden Blütenstände von zwei Seggenarten (Hasenpfoten-Segge hinten und Cypergas-Segge direkt davor) und vorne die Grundblätter der Großblütigen Königskerze. Bei den Blättern der Königskerze kann man das erste Gehölz erkennen, ein Hartriegel, vermutlich Cornus mas, die KornelKirsche:

Am 21. Juni 2018 kann ich folgende Arten registrieren:

Kleinblütige Königskerze – Verbacum thapsus

Großblütige Königskerze – Verbacum densiflorum

Feinstrahl, Einjähriges Berufkraut – Erigeron annuus

Zypergras-Segge – Carex pseudocyperus

Hasenpfoen-Segge – Carex leporina

Große Brennnessel – Urtica dioica

Weiß-Klee – Trifolium repens

Hopfen-Schneckenklee – Medicago lupulina

Weiße Taubnessel – Lamium album

Steifer Sauerklee – Oxalis strictum

Margerite, Wiesen-Wucherblume – Leucanthemum vulgare

Kriechendes Fingerkraut – Potentilla reptans

Spontanvegetation im Blumentopf am 19. Juni 2018

Mit den hochgewachsenen Königskerzen und dem Feinstrahl sieht unser Blumentopf nun richtig imposant aus. Die Nachbarin bewundert ihn. Allerdings sind einige Pflanzen auch schon fast verschwunden, zum Beispiel der Steife Sauerklee, die Margeriten sind längst verblüht. Einige Einjährige vom ersten Jahr – wie Ruten-Hirse, Kanadisches Berufkraut und Behaartes Knopfkraut – sind dieses Jahr gar nicht mehr erschienen.

Besonders beeindruckt bin ich von der Hasenpfoten-Segge. Ich habe bisher nicht gewusst, dass sie auch ausgesprochen schöne und sehr dauerhafte vegetative Triebe bildet, an denen man die dreizeilige Beblätterung sehr gut erkennen kann.

Vegetativeve Triebe der Hasenpfoten-Segge am 2. September 2018

Im Herbst fangen die meisten großen Pflanzen dann an zu vertrocknen. Der Feinstrahl bildet aber noch bis zum Dezember neue Blüten. In der niedrig stehenden Nachmittagssonne sieht unser De Vriesentopf immer noch sehr schön aus

Spontanvegetation im Blumentopf am 20.12.2018

Mittlerweile wurde unser Topf – zum ersten Mal diesen Winter – eingeschneit. Nun sind wir sehr gespannt, welche Pflanzen sich im nächsten Jahr entwickeln werden.

Die Bilder sollen anregen, selbst einen solchen Versuch mit spontaner Vegetation zu starten. Es reicht ein Blumentopf oder ein Blumenkasten. Natürlich wird die Zusammensetzung der Arten sehr stark von den äußeren Bedingungen, zum Beispiel von der Besonnung, der Wasserversorgung und vor allem dem Boden abhängen. Aber auch die umgebende Vegetation dürfte wichtig sein. Durch Variation dieser Bedingungen kann man Einfluss nehmen aber die Entwicklung nicht wirklich vorherbestimmen. Ein gewisser Überraschungseffekt wird immer bleiben und das ist das Spannende an dem De Vriesentopf.

De Vriesentopf nach dem ersten Schnee am 6.Januar 2019


16.7.2019 – mit Hasenpfoten-Segge (Carex leporina) und Großblütiger Königskerze (Verbascum densiflorum)
15. März 2020
21. Juni 2020
1.Mai 2020,Hasenpfoten-Segge und Zypergras-Segge nehmen viel Platz in Anspruch. Weitere Arten v.l.n.r.: Hopfen-Schneckenklee, Kriechendes Fingerkraut, Großblütige Königskerze, Große Brennnessel, Feinstrahl und als einziges Gehölz Blutroter Hartriegel
Juni 2020. Zypergras-Segge und Hasenpfotensegge haben Fruchtstände angesetzt. Sie sind nun die dominietrenden Pflanzen.
21. Juni 2020 . Auch der Hopfen-Schneckenklee hat sich gut entwickelt, aber vor allem außerhalb des Topfes.

So wie es jetzt aussieht, dürfte die Anzahl der Arten in der nächsten Vegetationsperiode weiter zurückgehen. Noch gibt es einen blühenden Feinstrahl, sehr mickriges Kriechendes Fingerkraut, sehr kleine „Große“ Brennnesseln, die Grundrosette einer Großblütigen Königskerze und einen sehr in die Enge getriebenen Blutroten Hartriegel. Neuansiedlungen von außerhalb scheinen nun endgültig nicht mehr möglich zu sein.

15.12.2020
18.01.2021
In kurzer Zeit sind über 50 cm Schnee gefallen
3.3.2021

Der Schnee war schnell wieder geschmolzen. Aber dann habe ich mich zu einem Eingriff entschlossen, der bewirken soll, dass die auskeimenden Pflanzen nicht zu sehr beschattet werden. Die abgestorbenen Pflanzenreste – vor allem von den Seggenarten – wurden abgeschnitten.

3.3.2021 – nach dem Stutzen
1.5.2021

Am 1. Mai sieht alles wieder schön grün aus, aber die Artenanzahl scheint etwas reduziert zu sein. Auf der noch freien Fläche hat sich vor allem das Kriechende Fingerkraut ausgebreitet. Der Hartriegel setzt sich durch.

26.8.2021

Die Hasenpfoten-Segge dominiert, der Hartriegel hatte einen Wachstumsschub, das Kriechende Fingerkraut hat lange Ausläufer gebildet, die über den Terrasseboden kriechen.Auch mehrere Feinstral-Pflanzen haben sich zunächst gut entwickelt, wurden aber dann stark von der Spanischen Wegschnecke abgefressen, Von der Großen Brennnessel haben sich nur zwei oder drei sehr kümmerliche Triebe entwickelt. Vom Gewöhnlichen Hornkraut sind verdorrte Fruchtstände zu erkennen.

17.1.2022
19.4.2022

Anfang März haben wir wieder – wie im vergangenen Jahr – trockene Blätter und Stängel entfernt. Der Aspekt ähnelt nun sehr stark dem Vorjahr. Außer Seggen ist vor allem das Kriechende Fingerkraut zu erkennen.

6.6.2022

Im 5. Jahr geht die Artenvielfalt deutlich zurück. Es dominiert ganz stark die Hasenpfoten-Segge, von der Zypergras-Segge sind nur noch wenige Halme übrig geblieben. Gut gehalten hat sich das Kriechende Fingerkraut. An weiteren Kräutern kann man bis jetzt nur wenige Pflänzchen des Gewöhnlichen Hornkrauts erkennen. Der Rote Hartriegel hat erheblich an Biomasse zugelegt.

3.10.2022

Das Foto zeigt die erfolgreiche Auswanderung des Kriechenden Fingerkrauts.

14.05.2023

Der Hartriegel blüht zum ersten Mal. Außer Hasenpfoten-Segge und Fingerkraut ist eine Schmalblättrige Wicke (Vicia angustifolia) zum Blühen gekommen.

06.05.2024

Rechtliche Hartriegel-Blüte; die Hasenpfoten-Segge beginnt zu blühen, Schmalblätterige Wicken blühen schon seit Mitte April, außerdem sind schon viele Blätter des Kriechenden Fingerkrautes sehen. Die Artenanzahl scheint sich auf niedrigem Niveau zu stabilisieren. Das Wurzelsystem des wachsenden Hartriegels dürfte sich immer mehr ausdehnen und den anderen Pflanzen Konkurrenz machen.

Ich werde den Versuch weiterführen.

Chicken Wings und Chiasamen – auf Entdeckungsreise im Supermarkt

LINK-NAME
Überlegungen zu einem geplanten Schüler-Kompakt von Unterricht Biologie

Die Frage der richtigen und gesunden Ernährung ist in unserer Überflussgesellschaft ein wichtiges und von Medien und Öffentlichkeit viel diskutiertes Problem. Sie ist wirklich ein Problem, aber nicht zuletzt ein Überflussproblem. Kurz gesagt scheint die Lösung einfach:

Esst wenig Zucker, Fett, Fleisch und viel Salat, Obst, Gemüse

Mit dieser einfachen Richtlinie ließen sich viele Ernährungsprobleme lösen. Aber das große Angebot macht die Realität für den Konsumenten ziemlich komplex und wenn man Schülerinnen und Schüler im Unterricht auf diese komplexe Wirklichkeit vorbereiten will, kommt man nicht umhin, die Frage nach der gesunden und nachhaltigen Ernährung auch in einer gewissen Komplexität zu bearbeiten. In der Sprache der zeitgemäßen Didaktik formuliert: Es gelingt sonst nicht, dass Schülerinnen und Schüler die Kompetenz entwickeln, sich gesund, umweltverträglich und nachhaltig zu ernähren.

Wie kann man SchülerInnen motivieren, sich einen Überblick über diese Vielfalt des Nahrungsmittelangebots in den Verbrauchermärkten zu  verschaffen und vernünftige, auf Fachkenntnissen beruhende Kaufentscheidungen zu treffen? Das Ziel: Die SchülerInnen sollen Verbraucherkompetenz entwickeln. Die Gefahr: Der deutlich erhobene Zeigefinger wirkt so, dass der Unterricht nicht ernst genommen wird bzw. langweilt. Eine motivierende Möglichkeit könnten Exkursionen in Kauflandschaften sein, bei denen die Entdeckungen von neuen Angeboten und unbekannten Produkten zu weiteren Recherchen und Informationen führen. Deshalb sollen die Beispiele in dem geplanten Kompakt von Unterricht Biologie insbesondere neuere Angebote und Werbestrategien in den Blick nehmen.

Konsumenten und Produzenten

Versuchen wir uns die komplexe Situation vorzustellen:

Produzent und Konsument

Ein Problem für den Konsumenten ist  die Vielfalt des Angebotes und die Vielfalt der (Werbe-)Informationen, denen er sich gegenüber sieht. Wie kann man SchülerInnen motivieren, sich einen Überblick über diese Vielfalt  zu verschaffen und sich um vernünftige, auf Fachkenntnissen beruhende Entscheidungen zu treffen?

Wenn der Verbraucher eine Kaufentscheidung für ein bestimmtes Nahrungsmittel im Supermarkt trifft, denkt er zunächst einmal daran, ob ihm das zu Kaufende schmecken wird, also an seinen Genusswert. Bei der Produktion des Nahrungsmittel hat der Produzent dieses natürlich auch im Blick, aber der entscheidende Gesichtspunkt für den Produzenten ist die Frage, ob er mit einem bestimmten Produkt auch Gewinn machen kann. Dabei spielt die Werbung eine entscheidende Rolle, also zum Beispiel die Verpackung, die Aufschriften usw.  (Motto: Mehr scheinen als sein).

Die Tendenz, möglichst billig zu produzieren, wird durch gesetzliche Bestimmungen beschränkt. Dabei kommt es immer wieder zu Übertretungen und die Medien berichten gerne von solchen Lebensmittelskandalen. Verbraucherorganisationen sind bestrebt, den Gesetzgeber dazu zu bringen, gesetzliche Vorschriften strenger zu fassen. Dabei können Ihnen die  Konsumenten  als Wähler helfen. Umgekehrt versucht die Lobby der Lebensmittelhersteller den Gesetzgeber so zu beeinflussen, dass diese Vorschriften nicht zu streng ausfallen.

Zwar hat der Verbraucher durchaus eine gewisse Macht. Seine Kaufentscheidung kann dazu beitragen, dass gesündere, auf sozial und ethisch verträglichere Weise produzierte Lebensmittel angeboten werden. Die Vielfalt des Angebots und die Vielfalt der Werbeinformationen und Berichte in den Medien über Gesundheit oder Schädlichkeit von Nahrungsmitteln ist jedoch oft schwer durchschaubar.

Qualitätsmerkmale aus Verbrauchersicht

Wenden wir uns nun noch einmal den Qualitätsmerkmalen zu, auf die ein Verbraucher bei einem Nahrungsmittel schauen könnte oder sollte.

Der Genusswert umfasst alle Eigenschaften, die man beim Essen mit den Sinnen wahrnehmen kann, also Aussehen, Geruch, Geschmack und Konsistenz, zum Beispiel die Reife einer Frucht oder die Frische eines Gemüses. Er wird aber auch von subjektiven Empfindungen bestimmt.

Der Gesundheitswert wird auch als ernährungsphysiologischer Wert bezeichnet. Er wird einerseits durch den Gehalt an Nährstoffen, Vitaminen, Mineralstoffen und Ballaststoffen bestimmt, andererseits von enthaltenen gesundheitsgefährdenden oder gefährlichen Stoffen und Keimen. Die Gesundheit von Nahrungsmitteln wird besonders intensiv für die Werbung genutzt. Es wird zum Beispiel versucht, den gesundheitsbewussten Konsumenten durch Nahrungsmittel mit speziellen Zusatzstoffen zu locken (Functional Food).Für eine gesunde Zusammensetzung der Nahrung gibt es zahlreiche Empfehlungen, zum Beispiel den sogenannten Ernährungskreis.

Der Gebrauchswert ergibt sich zum Beispiel aus Haltbarkeit, Zeitaufwand für die Zubereitung und Preis. So soll etwa durch  vorgefertigte Nahrungsmittel – Convenience Food –  der Gebrauchswert verbessert werden, indem die Nahrungszubereitung vereinfacht wird.

Um die Qualität eines Nahrungsmittel zu beurteilen spielt außerdem seine Herstellungsweise eine wichtige Rolle. Sie hat einmal Auswirkungen auf die innere Struktur. Zum anderen sind damit ökologische und gesellschaftliche Aspekte verbunden. Dazu formulierte die Bundesverband Verbraucherzentralen (V ZB V) folgende Fragen, die sich der Konsument stellen sollte:

  • Wie wirkt sich mein Konsumverhalten auf Klima und Umweltschutz aus?
  • Wie trage ich zum Energiesparen und zur Schonung der Ressourcen bei?
  • Was ist fairer Handel?
  • Wie sind die Arbeitsbedingungen in fernen Ländern?

Früher sei es eine Kernaufgabe von Eltern und Großeltern gewesen, solches Alltagswissen an nachfolgende Generationen weiterzugeben. „Doch das funktioniert heute in der Komplexität der Märkte und der Innovationen nicht mehr“, so der VZBV. Deshalb seien die Schulen hier gefordert. Konsequent wurde im Bundesland Schleswig-Holstein das das Schulfach Verbraucherbildung eingeführt. Dies wird der Tatsache gerecht, dass der genannte Fragenkatalog Bereiche ganz verschiedener klassischer Fächer berührt.

Aber auch die Behandlung im Biologieunterricht ist zu rechtfertigen.

  • Die menschliche Ernährung ist eng verknüpft mit dem klassischen biologischen Thema des menschlichen Stoffwechsels und der Funktion der Verdauungsorgane.
  • Nahrungsmittel werden aus Pflanzen und Tieren hergestellt und dabei geht es um grundlegende biologische Sachverhalte.
  • Nahrungsmittelproduktion hinterlässt deutliche „ökologische Fußspuren“, sie hat großen Einfluss auf die Ökosysteme und den Naturhaushalt.
  • Klassische und moderne Züchtung bzw. Herstellung von Nutzpflanzen und Nutztieren fußen auf Erkenntnissen und Gesetzmäßigkeiten der Genetik und der Molekularbiologie.
  • Die Kritik der modernen Massentierhaltung und die Forderung nach artgerechter Tierhaltung beruht auf Kenntnissen des tierlichen Verhaltens

Einige Beispiele sollen zeigen, wie eine vertiefte Behandlung des Themas „Nahrungsmittelqualität“ aussehen könnte.

Chicken Wings und die industrielle Fleischproduktion

In früheren Zeiten –zu Zeiten von Max und Moritz – war Geflügel ein Festessen. Brathähnchen, wie sie zum Beispiel auf dem Cannstatter Volksfest in Stuttgart angeboten wurden, „Göckele“, waren etwas ganz besonderes. Ein halbes Hähnchen kostete allerdings in meiner Jugend noch mindestens fünfmal so viel wie eine Bratwurst und für das Geld konnte man sicher mit 10 Karussellen fahren.

Damals, in den 1950 er Jahren, wurden die Hühner bei uns noch in relativ kleinen Hühnerfarmen gehalten. Ein paar hundert Tiere waren schon viel.

Aber der Hunger nach dem leckeren Hühnerfleisch war groß, die Hühnerfarmen wurden größer und größer, die Angebote immer günstiger und aus dem seltenen Festtagsbraten wurde ein immer populäreres  und schließlich auch immer billigeres Fleischgericht („Am Sonntag bleibt die Küche kalt, wir gehen in den Wienerwald“). Heute ist ein Kilo Hähnchen manchmal kaum teurer als ein Kilo Kartoffeln und oft billiger als ein Kilo Auberginen.

Ursache dieses Preisverfalls ist die industrielle Fleischproduktion. Ihre Anfänge gehen zurück bis zu den Schlachthöfen von Chicago zu Beginn des 20. Jahrhunderts, die literarisch zum Beispiel einen Niederschlag fanden in den Werken von Upton Sinclair (The Jungle) und Bert Brecht (Die heilige Johanna der Schlachthöfe). Über die gegenwärtige industrielle Fleischproduktion gibt es unzählige kritische Bücher, Berichte, Videos und Dokumentationen, zum Beispiel von PETA (People for the Ethical Treatment of Animals). In Deutschland besonders skandalbelastet sind die Schweineproduktion und die Geflügelproduktion.

Für die sechs  Hühner der Witwe Bolte, die ihr Leben bis zu Max und Moritz „lebensfroh im Sande scharrend“ verbringen konnten, bot sich nur das Braten am Stück an. Auch in den ersten Jahrzehnten nach dem Zweiten Weltkrieg wurden Hähnchen bzw. Hühner vor allem ganz gekauft und gegessen.

Mit zunehmender Industrialisierung der Hühnerfleischproduktion wurden nicht nur die Stückzahlen der gehaltenen Hühner immer größer, es gab auch eine immer weitergehende Spezialisierung  in

  • Zuchtbetriebe für Großeltern- und Elterntiere,
  • Vermehrungsbetriebe zur Produktion von Bruteiern,
  • Brütereien,
  • Mästereien und schließlich
  • Schlachtereien, in denen die Hühner am Fließband geschlachtet und die einzelnen Hühnerteile getrennt verarbeitet werden.

Parallel mit dieser Spezialisierung (als Folge oder als Voraussetzung?) entwickelte sich die Massentierhaltung mit immer größerem Tierbesatz und allen damit zusammenhängenden Scheußlichkeiten. Die industrielle Schlachtung und Weiterverarbeitung erlaubte eine Einzelvermarktung der verschiedenen Hühnerteile.

Zunächst gewann insbesondere die schnell, einfach und ohne Abfall zuzubereitende Hähnchenbrust an Bedeutung. Hühner wurden vor allem produziert, um Hühnerbrüste zu verkaufen, sodass die Produzenten einen Überschuss an allen anderen Hühnerteilen wie Keulen und Flügeln hatten. Entsprechend preiswert mussten diese Teile verkauft werden. Da war die „Erfindung“ der Chicken Wings als Kultgericht ein besonderer Glücksfall für die Geflügelproduzenten. 

Denn diese Hühnerteile gehören heute zu den beliebtesten Fast Food Gerichten, die man in Restaurants und Imbissbuden sehr preiswert serviert bekommt. Die handlichen Stücke lassen sich als Fingerfood verzehren und sie erfreuen sich vor allem bei Jugendlichen großer Beliebtheit. In Supermärkten werden sie in unterschiedlichen Varianten angeboten, schon vollständig vorgefertigt (Convenience Food) oder tiefgekühlt und schon fertig gewürzt  oder auch ohne Würzung zum selber  Frittieren oder Grillen.

Im Gegensatz zu vielen Gerichten der Alltagskultur haben die oft auch als „Buffalo Wings“ angebotenen Hühnerteile einen bekannten Ursprung: die Anchor Bar in Buffalo im Staat New York. Dort wurden sie erstmals am 30. Oktober 1964 serviert.

Die entscheidende Ausbreitung erfolgte in den 1990 er Jahren. Die weltweit agierenden Fast Food Ketten Pizza Hut und Domino‘s nahmen Chicken Wings in ihre Speisekarten auf. 1994 führten sie das Gericht zur American Football Saison landesweit ein. Domino‘s gab 32 Millionen US $ für Werbespots aus. Der Flügelkonsum ist seither besonders eng mit dem sogenannten Super Bowl verbunden. 2017 wurden am Super Bowl Wochenende 1,33 Milliarden Chicken Wings verzehrt.

Mittlerweile ist es deshalb so, dass die starke Nachfrage nach Hühnerflügeln ein Überangebot an anderen Teilen des Huhnes geschaffen hat. Und auch vom Flügel wird nicht alles benötigt. Die Flügelspitzen werden nach Asien, insbesondere nach China, exportiert und dort für die beliebten Geflügelsuppen verwendet.

Bei einer Qualitätsbewertung werden die Wings und die Nuggets beim Genusswert vermutlich ziemlich gut abschneiden, wegen des niedrigen Preises und der leichten Zubereitung sicherlich auch beim Gebrauchswert. Beim Gesundheitswert  ist der hohe Protein- und Fettgehalt zu beachten. Ökologie, Nachhaltigkeit, Tierschutz und Arbeitsbedingungen bei der „Produktion“ werden jedoch ein sehr schlechtes Zeugnis bekommen.

Chiasamen und andere Superfoods

Chia-Samen

Seit einigen Jahren trifft man in den Supermarktregalen immer häufiger auf einen neuen Namen: „Chia“. Es gibt Chia Müsli, Chia-Brot, Chia-Öl, Chia-Mehl oder auch ganze Packungen mit Chia-Samen.

Was steckt hinter diesem Chia?

Das Wort Chia ist aus der Sprache der ursprünglich in Kalifornien lebenden Nhuatl-Indianer abgeleitet, dort bedeutet chian so viel wie ölig . Es wird für zwei meist einjährige Salbei-Arten mit öligen Samen verwendet, die von den Indianerstämmen des heutigen Kaliforniens und Mexikos zu medizinischen Zwecken und als Speisezusatz verwendet wurden. Die nun bei uns im Handel befindlichen Samen stammen von Salvia hispanica. Der wissenschaftliche Name ist nicht ganz passend, denn dieser Salbei stammt ursprünglich aus Mexiko, weshalb er auch Mexikanischer Salbei genannt wird. Aber die Spanier brachten die Pflanze nach Europa und deshalb verwendete Linné, der die Pflanze schon kannte, das nicht ganz passende Epitheton. Die Pflanzen werden bis zu 2 m hoch. Sie blühen – ähnlich wie unser Wiesen-Salbei – blau violett. Die andere bisher als Superfood weniger genutzte Chiapflanze ist Salvia columbariae (Kalifornischer Salbei), deutlich kleiner und ziemlich xeromorph, die in den Halbwüsten Kaliforniens vorkommt.

Wie bei allen Lippenblütlern werden die Samen in Schließfrüchten gebildet. Bei der Reife zerfallen diese in vier Teilfrüchte („Klausen“), die jeweils einen Samen enthalten. Bei Mayas und Azteken genossen die Salbeisamen wegen ihrer sättigenden und gesundheitsfördernden Wirkung hohes Ansehen. Sie gaben die Samen ihren Botschafter mit – ihre sättigende Wirkung sollte ihnen helfen, lange Wegstrecken zu meistern.

Chia-Samen enthalten bis zu 38 % Öl, 18-23 % Proteine und etwa 40 % Kohlenhydrate, die zum größten Teil aus quellfälligen und unverdaulichen Polysacchariden bestehen („Ballaststoffe“). Die Konzentration von B-Vitaminen (Thiamin,Niacin, Riboflavin, Folsäure) und β-Carotin (Provitamin A) ist vergleichsweise hoch. Auch der Gehalt an Antioxidantien  (Tocopherole,Vitamin E) sowie ernährungsphysiologisch wichtigen Mineralstoffen ist beachtlich – dies gilt insbesondere für die Elemente Calcium, Kalium, Phosphor, Zink und Kupfer. Das Chia-Öl hat mit etwa 90 % einen besonders hohen Anteil an ungesättigten Fettsäuren, insbesondere der dreifach ungesättigten α-Linolensäure (55%).

http://www.apotheken-umschau.de/Ernaehrung/Chia-Samen-Wirklich-ein-Superfood-491003.html

Um besonders gesundheitsbewusste Verbraucher zu locken, lassen sich Lebensmittelindustrie und insbesondere Naturkostläden immer wieder neue Produkte einfallen. Oft handelt es sich – wie bei Chia – um exotische Naturprodukte, die traditionell in entfernten Kulturen eine wichtige Rolle gespielt haben. Zu nennen wären zum Beispiel Quinoa (Chenopodium quinoa), Urdbohnen (Vigna mungo), Goji-Beeren (Lycium barbarum, L.chinense), Acai- (Euterpe oleracea, Kohlpalme) Moringa- Pulver (Moringa oleifera, Meerretichbaum) oder Spirulina-Pulver aus Blaugrünen Bakterien („Blaualgen“). Sie werden als Neuentdeckungen angepriesen, als Superfood, unwahrscheinlich gesund. Dies rechtfertigt einen verhältnismäßig hohen Preis und entsprechend hohe Gewinnspannen. Dabei ist unbestritten, dass solche exotischen Nahrungsmittel oft der Gesundheit förderlich sind und zum Teil sogar heilende Wirkungen haben. Aufgrund der Werbung wird der gesundheitliche Wert jedoch meist überschätzt, vor allem ist es nicht unbedingt einsichtig, warum diese neuen Nahrungsmittel traditionellen Produkten deutlich überlegen wären. Der Chia-Hipe ist dafür ein gutes Beispiel.

Das Enfant terrible der Lebensmittelchemiker, Udo Pollmer, hat im Deutschlandradio Kultur einen sehr kritischen Kommentar dazu abgegeben:

„Die Wiederentdeckung verdanken wir der Futtermittelwirtschaft, die vor 15 Jahren versuchsweise Hühner mit Chia fütterte. Als die aber Eier mit kleinerem Dotter legten, schwand das Interesse. Und was macht der kluge Händler, wenn seine Ware nicht für den Futternapf taugt? Er kippt das Vogelfutter ins Müsli und annonciert es als „Superfood“. … Dort wo die Chia heimisch ist, wird sie gewöhnlich als trübes Erfrischungsgetränk mit etwas Fruchtsaft genossen, eine unbedenkliche Zubereitung. Ihre Fähigkeit Unmengen Wasser zu binden, weckte inzwischen auch die Neugier der Lebensmittelindustrie. Mit derart potenten Quellstoffen lassen sich kalorienreduzierte Produkte herstellen, aufgrund ihrer emulgierenden Eigenschaften ersetzt der Schleim in Kuchenteigen die Eier, in Speiseeis die Sahne. Es ist nicht gerade ein Superfood, aber als Superschleim können es die Samen noch weit bringen.“

Was ist nun wirklich dran an dem Wunder-Chia? Vergleicht man die Inhaltsstoffe von Chiasamen mit traditionelleren Samen wie Leinsamen oder Sonnenblumenkernen, stellt man fest,es gibt keine entscheidenden Unterschiede bis auf vielleicht die hohe Quellfähigkeit.

Tatsächlich ist diese hohe Wasserbindungskraft der Chia-Polysaccharide nicht ganz unbedenklich. Chia Samen binden die 25 fache Gewichtsmenge Wasser. Dies kann dazu führen, dass bei der Darmpassage Flüssigkeit aus dem Gewebe gezogen wird und die aufgequollene Masse den Darm blockiert. Dazu müsste man allerdings größere Mengen zu sich nehmen und vermutlich ist das auch der Grund, warum es eine Empfehlung der Europäischen Kommission gibt täglich nicht mehr als 15 g Chia-Samen zu verzehren.

Wechselwirkungen mit Gerinnungshemmern wie Warfarin/ Coumadin®, Acetylsalicylsäure/ASS/Aspirin sind möglich.

Auch der Anbau von Chia-Samen, der sich wegen des guten Verkaufs mittlerweile in den Subtropen immer weiter ausbreitet, kann kritisch gesehen werden: Das Saatgut wird mit Pflanzenhormonen behandelt, um die Keimung der Samen zu vereinheitlichen. Zudem werden reichlich Unkrautvernichtungsmittel verwendet, auch solche, die in der EU umstritten oder sogar verboten sind. Im Vergleich zu anderen Nahrungspflanzen liefern Chia-Pflanzen einen eher geringen Ertrag. Die für den Chia-Anbau genutzten Ackerflächen können aber gleichzeitig nicht für ertragreichere nährende Lebensmittel genutzt werden – das hat negative Folgen für die Menschen im Ursprungsland des Superfood.

Auf jeden Fall gibt es kostengünstigere und gleichwertige Alternativen, zum Beispiel Leinsamen und Sonnenblumenkerne.

Bei einer Bewertung wird hier vermutlich der Genusswert relativ niedrig ausfallen, der Gesundheitswert entsprechend hoch. Allerdings müssen dabei einige Fragezeichen gemacht werden. Die Kosten sind im Vergleich zu ähnlichen herkömmlichen Nahrungsmitteln hoch, weshalb man den Gebrauchswert als relativ niedrig einstufen muss. Der politische Wert (Ökologie, Nachhaltigkeit, soziale Fragen) dürfte ebenfalls eine ziemlich schlechte Bewertung bekommen.

Frei von – Nahrungsmittel

Glutenfreie Nudeln

Wir sind in der Nudelabteilung des Supermarkts. Unendlich dehnt sich das Angebot. Da kann man nicht nur unterscheiden zwischen Bandnudeln, Hörnchen, Spiralnudeln, Muscheln, Spätzle,  Spaghetti, Makkaroni, Gnocchi. Auch Teigwaren aus verschiedenen Mehlsorten wie Weizen-Weißmehl, Dinkelmehl oder Vollkornmehl, ja sogar Reismehl und Mehl aus unterschiedlichen Hülsenfrüchten werden angeboten, eine wahrhafte Nudeldiversität!

Auf einem guten Meter Regalbreite finden sich Packungen, die im Schnitt deutlich teurer sind und bei genauem Hinsehen erkennt man den Grund: da steht auf den Packungen „glutenfrei“  (GF)  auf manchen ist auch das Symbol einer durchgestrichenen Weizenähre zu sehen.

Der weniger gebildete Verbraucher fragt sich, was wohl dahinter stecken mag. Wird hier die Freiheit von einem Stoff garantiert, der in den üblichen Teigwaren enthalten ist und der Gesundheit schadet und sollte man deshalb sicherheitshalber auf solche glutenfreien Produkte zurückgreifen?

Gluten oder Klebereiweiß ist ein Sammelbegriff für ein Stoffgemisch aus Proteinen, das in den Samen einiger Getreidearten vorkommt, zum Beispiel im Weizenkorn. Wenn man einen Teig aus Weizenmehl anrührt und die Stärke und alle löslichen Bestandteile mit Salzwasser herauslöst, bleibt ein zähes Gemisch aus viel Proteinen und wenig Lipiden und Kohlenhydraten übrig, das für den Zusammenhalt des Teiges verantwortlich ist. Wegen seiner klebrigen Eigenschaft wird es auch „Kleber“ genannt. Der Proteinanteil ist das Gluten, das aus verschiedenen Glutamin- und Prolin-haltigen Proteinen zusammengesetzt ist. Es hat für die Backeigenschaften des Mehls eine zentrale Bedeutung. Nur aus Mehlen mit Gluten kann Brot in Form eines Laibs gebacken werden, da nur ein solcher Teig beim Erhitzen die notwendige Gashaltefähigkeit hat. Sie ist die Voraussetzung dafür ist, dass das Gebäck durch das Gärgas Kohlenstoffdioxid aufgehen kann.

Glutengehalt von Getreidemehlen pro 100 g Mehl in g (n.Wikipedia)

Dinkel (Typ 630) 10,3
Weizen (Typ 405) 8,66
Hafer (Vollkornmehl) 5,6
Gerste (entspelzte Körner) 5,6
Hartweizen, Emmer, Einkorn, Roggen 3,2
Teff, verschiedene Hirsen, Reis, Mais 0
Pseudogetreide Quinoa, Amaranth, Buchweizen 0

Das ist der Grund, warum man aus Mais oder Hirse kein Brot, allenfalls Fladenbrote, backen kann.

Aber was ist schlecht an Gluten? Manche Menschen vertragen bestimmte der im Gluten enthaltenen Proteine nicht. Sie entwickeln dagegen eine Immun- und in der Folge auch eine Autoimmunreaktion. Sie führt zu einer pathologischen Veränderung der Dünndarmschleimhaut und in der Folge zu einer Degradation der Darmzotten. Dadurch wird die Resorptionsfähigkeit des Dünndarms wesentlich verschlechtert, mit vielen nachteiligen Folgen. Diese als Zöliakie bekannte Krankheit soll aber in Deutschland nur relativ selten (bei 0,3% der Bevölkerung) vorkommen.

Symptome für Zöliakie

Intestinale Symptome
Motilitätsstörungen, von Durchfall bis Verstopfung
Übelkeit, Erbrechen, Blähungen, chronische Bauchschmerzen
Extraintestinale Symptome
Gewichtsverlust
Wachstumsstörungen bei Kindern
Anämie
Knochenveränderungen/Osteoporose, Zahnschmelzveränderungen
Periphere Neuropathie
Muskelschwäche
Nachtblindheit
Hämatome
Ödeme
Entzündungen der Mundschleimhaut

http://www.awmf.org/uploads/tx_szleitlinien/021-021l_S2k_Z%C3%B6liakie_05_2014_01.pdf

Das sind relativ vielseitige und zweifellos nicht nur mit der Zöliakie verbundene Symptome. Aber Zöliakie hat eine große mediale Aufmerksamkeit erfahren und die Gefahr besteht, dass der Verbraucher sich die Selbstdiagnose Zöliakie stellt und meint, es wäre sinnvoll,  nur noch glutenfreie Nahrungsmittel zu sich zu nehmen. Der Nahrungsmittelindustrie kommt diese Entwicklung entgegen. Sie sucht angesichts des Überangebotes ständig nach Nischen, wo noch Zuwächse erzielt werden können. Die „frei von“-Produkte haben sich dabei als sehr ergiebige Nischen erwiesen. Die Verbraucherzentrale Hamburg hat ausgerechnet, dass glutenfreie Nahrungsmittel im Schnitt zweieinhalb mal so viel kosten wie normale.

Wichtigster Wirkstoff bei der Zöliaki ist das Gliadin. In Zusammenwirken mit dem Humanen Leucocyten-Antigensystem (HLA) weden in den Dünndarmzotten der entspre3chend empfindlichen Menschen bestimmte T-Helfezellen aktiviert, vermehrt entzündungsauslösende Botenstoffe wie Interferon und Interleukine zu bilden. Die Folge ist schließlicch eine  schwere Beschädigung der Dünndarmzotten.

Mittlerweile konnte schon gentechnisch veränderter Weizen entwickelt werden, der die für Zöliakie relevanten Gluten-Proteine nicht enthält. Die meisten glutenfreien Mehle stammen bisher aber von glutenfreien Getreiden und Pseudogetreidearten wie Hirsemehl oder Amaranthmehl und einem Zusatz reiner Stärke oder z. B. auch Chiamehl ,  Agar, Maniokmehl oder Eiklar.

Angesichts der stürmischen Entwicklung der „frei von“ – Nahrungsmittel sollte das Thema in den Unterricht aufgenommen werden. Auch wenn die immunbiologischen Zusammenhänge vergleichsweise kompliziert sind, so ist eine didaktische Reduktion durchaus möglich,  zum Beispiel auf Basis der Dünndarmabbildungen in vielen Schulbüchern.

Exkursionen in den Supermarkt

Ein wichtiges Prinzip des Biologie-Unterrichtes ist es, unmittelbare Anschauung zu ermöglichen. Dies kann z. B. durch praktische Arbeiten der Schüler und Schü­lerinnen im Labor oder im Freiland erreicht werden. Ein mögliches Erfahrungsfeld für unmittelbare Anschaulichkeit sind aber auch Einkaufszentren wie Verbrauchermärkte, Su­permärkte usw. Dabei spielen diese Einkaufslandschaften als Aufenthaltsorte von Kindern und Jugend­lichen schon lange eine wichtige Rolle. Schon vor 30 Jahren haben wir bei etwa 400 Schülerinnen und Schülern von Flens­burger Haupt-, Real- und Gesamtschulen im Alter zwischen 9 und 16 Jahren eine Befragung durch­geführt. Das Ergebnis hat uns nicht sehr überrascht. Kauflandschaften sind Orte, an denen sich Schüler und Schülerinnen in ihrer Freizeit bedeutend länger und häufiger aufhalten, als dies zum Einkaufen nötig wäre. Das dürfte sich bis heute eher noch verstärkt haben. Kauflandschaften sind zu einem wichtigen Teil unserer Um­welt geworden und viele Menschen verbringen dort einen guten Teil ihrer Freizeit. Es bietet sich deshalb an, diesen Teil der Umwelt für die (biologische) Allge­meinbildung zu nutzen. Dies gilt nicht nur für Fragen von Ernährung und Stoffwechsel, aber diese Inhalte bieten sich natürlich für „Biologie im Supermarkt“ besonders an.

Für unsere drei Beispiele könnte ich mir folgende Aufgabenstellungen für Exkursionen in den Supermarkt vorstellen: 

Chicken Wings

Die meisten Schüler – soweit sie nicht Veganer oder Vegetarier sind – werden Chicken Wings und Chicken Nuggets ganz gerne essen. Ein Unterricht zu dem Thema könnte so aufgebaut sein, dass die Schüler sich zunächst über das Hühnerfleischangebot in einem Supermarkt informieren, dann eine begründete Aussage darüber machen, welche Hühnerfleischprodukte sie beim Kauf bevorzugen würden und schließlich mit der Produktion von Hühnerfleisch und speziell von Chicken Wings über vorgegebene Texte oder eigene Recherchen aufgeklärt werden.

  •  Bestandsaufnahme der angebotenen Formen von Hühnerfleisch
  • Preisvergleiche bezogen auf den Kilopreis von verschiedenen Hühnerfleischprodukten, Kartoffeln und Gemüsen.
  • Recherchen zu Hühnerfleischproduktion

Chia

  • Alle Produkte, die Chiasamen oder Mehl enthalten, aufspüren. Werbeaussagen auf den Packungen sammeln.
  • Inhaltsstoffe von Chiasamen nach Angaben auf den Verpackungen notieren und ihre Bedeutung für den menschlichen Organismus herausfinden (Recherche)
  • Quellvesuch mit Chiasamen
  • Suche nach anderen „Superfoods“ und Recherche nach Informationen über diese Lebensmittel
  • Vergleich von Chia-Inhaltsstoffen mit Leinsamen, Sonnenblumenkernen, Walnusskernen, Erdnüssen …

Frei von …

  • Nahrungsmittel, die mit „glutenfrei“ gekennzeichnet sind suchen und die Preise mit nicht glutenfreien aber sonst identischen Lebensmitteln vergleichen.
  • Durch Studium der Packungsaufschriften herausfinden, von welchen Pflanzen glutenfreie Mehle stammen.
  • Auf die Suche nach anderen „frei von“-Lebensmitteln gehen und den jeweiligen gesundheitlichen Hintergrund recherchieren
  • Herausfinden, ob auch Lebensmittel mit „frei von“ etikettiert werden, die den entsprechenden Stoff ohnehin nicht enthalten.

Zur Dokumentation der Recherchen können einfache Kameras (Handy) eingesetzt werden.

Weitere Themen für Exkursionen in den Supermarkt

  • Gerstengraupen, Haferflocken, Bulgur (aus welchen Bestandteilen besteht ein Getreidekorn und wie werden diese zu Nahrungsmitteln verarbeitet?)
  • Pseudogetreide (Amarant, Buchweizen, Hanf, Quinoa – wo kommen sie her, welche Vorteile könnten sie bringen?)
  • Pak Choi, Okra und andere exotische Gemüse und Salate
  • Protobiotische Nahrungsmittel und andere Functional Foods (Werbung und Wahrheit über funktionelle Zusatzstoffe ind Nahrungsmitteln)
  • Obstangebot und Nachhaltigkeit (Saisonalität, Herkunntsländer)
  • Light-Produkte (Helfen Sie wirklich beim abnehmen? Gibt es gesundheitliche Bedenken?)
  • Was bedeuten  die E-Nummern?
  • Natürlich, künstlich und naturidentisch
  • Inhaltsangaben (die Liste der Inhaltsstoffe, die auf Verpackungen von Lebensmitteln angegeben wird, ist auf der lang. Was sind das für Stoffe, was bewirken sie, könnte man auf sie verzichten?)

Literatur, Quellen

Biesiekierski, J, R. (2017): What is gluten? Journal of Gastroenterology and Hepatology, Volume 32, Issue S1 https://onlinelibrary.wiley.com/doi/full/10.1111/jgh.13703

Brockhaus Lexikonredaktion (Hrsg.) (2001):  Der Brockhaus Ernährung – Gesund essen, bewusst leben. Leipzig/ Mannheim: Brockhaus

Foer, J.S. (2010): Tiere Essen: Köln: Kiepenheuer und Witsch

Heindl, I.(2003): Studienbuch Ernährungsbildung, Heilbrunn: Klinkhardt

Hoffmann, I./Leitzmann, C./Schneider, K. (2011): Ernährungsökologie: Komplexen Herausforderungen integrativ begegnen. München: oekom-Verlag

Leitzmann, C. (2011): Mehr als ein Ernährungsstil: Vegetarismus. Biol.Unserer Zeit 41(2), S. 124-131

Müller,T. (2018): glutenfreie Ernährung mit bitterem Nachgeschmack. Ärztezeitung. https://www.aerztezeitung.de/panorama/ernaehrung/article/958794/ernaehrung-glutenfreie-ernaehrung-bitterem-nachgeschmack.html

Pollan, M. : Das Omnivoren-Dilemma.Goldmnn/Arkaner, München 2011

Probst, W., Scharf, K.-H. (2010): Biologie im Supermarkt. 2.A., Seelze: Aulis Verlag in Friedrich Verlag

Probst, W. (Hrsg.) (2013): Küchenbiologie. Unterricht Biologie 385 (Jg. 37), Seelze: Friedrich Verlag

Rudolf, G. (2016): Chia-Samen – ein Superfood? Unterricht Biologie 415 (40. Jg.), S.18-22, Seelze: Friedrich Verlag

Wertschätzung und Verschwendung von Lebensmitteln http://www.evb-online.de/schule_materialien_wertschaetzung_uebersicht.php

Young, S. R. (2011): Gourmet lab – The scientific principles behind your favorite foods.  Arlington, Virginia (USA): NSTApress

https://de.wikipedia.org/wiki/Gluten

Leben und Konsum

LINK-NAME

Titelfoto: Zucker als Abfall Phloemsaft konsumierender Blattläuse auf Lindenblatt.

Im September 2020 ist UB 457 „Leben und Kosum“ erschienen.

Konsum und Konsument

Der Begriff „Konsum“ und „Konsument“  bzw. „Verbraucher“ spielt in der modernen Gesellschaft eine wichtige Rolle. Man spricht von einem Konsumklima und es gibt sogar einen Konsumklimaindex, ein Verbraucherministerium und Verbraucherzentralen, die dem Verbraucherschutz dienen sollen. In Schleswig-Holstein gibt es seit einigen Jahren das Schulfach „Verbraucherbildung“, seit 2017 werden von der  Verbraucherzentrale Bundesverband (vzbv)  Schulen mit besonders vielfältigem Engagement in der Verbraucherbildung mit der Auszeichnung „Verbraucherschule Gold“ bzw. „Verbraucherschule Silber“ gewürdigt.

In Wirtschaftsberichten ist Konsumsteigerung positiv belegt. Der Konsum muss gesteigert werden, um das für die Wirtschaft notwendige Wachstum zu ermöglichen. Allerdings wird diese marktwirtschaftliche Prämisse mindestens seit 40 Jahren, seit der Studie des Club of Rome über die „Grenzen des Wachstums“ von 1972, auch kritisch gesehen,  wird über den Zusammenhang von Wirtschaftswachstum und ökologischem Wachstum nachgedacht. Dabei spielt der Begriff der Nachhaltigkeit eine zentrale Rolle. Seit 2008 findet als wichtigste Veranstaltung der Wachstumskritiker die Internationale Degrowth-Konferenz statt. Diese Kritiker fordern, dass Wirtschaftsmodelle an die realen Bedingungen angepasst werden müssen. Die ökonomischen Theorien dürfen nicht zu einem Wachstumszwang führen.

Häufig wird die Biosphäre als Vorbild für mögliche menschliche Wirtschaftsweisen herangezogen. Konsumbedingte Umweltprobleme könnten durch Konsumverzicht, aber auch durch Kreislaufwirtschaft gemindert werden. Welche Methode für nachhaltige Entwicklung vielversprechender ist, wird kontrovers diskutiert (Probst 2009).

Waxchstum der Weltbevölkerung von 1700 bis heute und prognostizierte zukünftige Entwicklung

Durch das Studium der Wachstums- und Konsumproblematik in der Biologie können Einsichten in ökologische und ökonomische Probleme gewonnen werden. Formen exponentiellen Wachstums, wie sie zum Beispiel in Bakterienkulturen oder bei Krebsgeschwüren auftreten, scheitern relativ schnell an der eigenen Dynamik. Andere Wachstumsprozesse, die kurzfristig zu einem „Umkippen“ des Systems führen sind zum Beispiel die Hypertrophierung eines Gewässers, die Massenvermehrung einer eingeschleppten Art oder das Aussterben einer Schlüsselart. Beispiele für das Zusammenspiel von Wachstum, Konsum und Abfall, die in längeren Zeiträumen ablaufen, sind Prozesse wie die Verlandung eines Gewässers, Wüstenbildung oder Walddegradation.

Das in den letzten 200 Jahren abgelaufene exponentielle Wachstum der menschlichen Bevölkerung von etwa 1  Mrd. Menschen 1804 bis auf heute 7,3 Mrd. hat eine enorme Konsumsteigerung mit sich gebracht. Die Ressourcen an Rohstoffen und Energie werden immer stärker in Anspruch genommen und Bemühungen um Recycling  der Abfälle konnten bisher nicht verhindern, dass die Lücke zwischen Verbrauch und Regenaration immer größer wird. Die wichtigste Zukunftsaufgabe der Menscheit ist es, diese Lücke zu schließen.

Konsument Lebewesen

Leben ist immer mit Konsum verbunden. Dieser Konsum bedeutet zunächst einen ständigen Bedarf an Nährstoffen, sodann eine ständige Abgabe von Abfallstoffen. Da es für Lebewesen außerdem charakteristisch ist, dass sie ständig wachsen und sich vermehren, steigen damit auch Verbrauch und Abfall an. Das Ende einer solchen Entwicklung ist abzusehen: Irgendwann sind entweder die Nährstoffe erschöpft oder die Abfallstoffe lebensgefährlich angehäuft. Die Lebewesen verhungern oder vergiften sich. Die Grenzen des Wachstums sind eng verbunden mit Verbrauch und Abfall.

Obwohl solche Grenzen im Laufe der Erdgeschichte regelmäßig zu Engpässen und auch zur Vernichtung von Lebensräumen und zum Aussterben von Arten geführt haben, konnte das Leben auf der Erde dieser gefährlichen Entwicklung  immer wieder  dadurch entgehen, dass Lebewesen in der Lage sind, sich zu verändern. Durch die Mechanismen der Anpassungsselektion gelang es ihnen, neue Nahrungsquellen zu erschließen und der Gefährdung durch Abfälle zu entgehen. Dabei haben große Mengen zunächst gefährlicher Abfallstoffe oft zu besonders großen Schüben in der Evolution geführt, in dem die Abfallstoffe als neue Rohstoffe genutzt und recycelt wurden:

  • Sauerstoffanhäufung durch photosynthetisch aktive Cyanobakterien führte zu „Erfindung“ der aeroben Dissimilation und damit zum Beginn eines sehr effektiven Stoffkreislaufs.
  • Überschuss an Zucker bei fotosynthetisch aktiven Pflanzen ermöglichte die verstärkte Bildung von stabilisierenden Stoffen auf Kohlenhydratbasis wie Zellulose und Lignin. Diese Stoffe waren eine wesentliche Voraussetzung für die Stabilität großer Landpflanzen und damit der Entwicklung von Wäldern.
  • Kalküberschuss durch Nutzung von Hydrogenkarbonat bei der Photosynthese ermöglichte Skelett- und Schalenbildung. Die endosymbiotischen Algen  in Steinkorallen verschieben durch ihre Assimilation  das Gleichgewicht zwischen Kohlenstoffdioxid und Karbonat und schaffen damit die Voraussetzung für die Bildung der Korallenriffe.
  • Proteinüberschuss war die Voraussetzung zur Bildung von Hornschuppen, Haaren und Federn.
  • Die Notwendigkeit überschüssige Stickstoffverbindungen loszuwerden, begünstigt silbrige (guaninhaltige) Fischschuppen und bei Pflanzen die Bildung von Alkaloiden.

Stoffkreisläufe

Laubstreu im Buchenwald

Ökosysteme bestehen aus Produzenten,  Konsumenten und Destruenten. Dabei kann man die Konsumenten verschiedenen Trophiestufen zuordnen. Der Konsum der höheren Stufe wird häufig durch Produktion auf der niederen Stufe reguliert (Bottom-up Regulation), umgekehrt können aber auch die Konsumenten höherer Ordnung die Konsumenten der nächstniederen Stufe regulieren (Top-down Regulation).

Die Abfall-verwertenden Destruenten sind für die Stoffkreisläufe von besonderer Bedeutung. Durch die Wiederverwertung von Abfällen haben sich die großen Stoffkreisläufe der Biosphäre herausgebildet. Photosynthese und Atmung sind bis heute die Grundlage des Kohlenstoffkreislaufs. Der Abbau organischer Stickstoffverbindungen bis zum Ammoniak bzw. durch Nitrifikation zum Nitrat ermöglichen den Stickstoffkreislauf.

Solche Stoffkreisläufe haben sich auf dem Bioplaneten Erde in seiner mehr als 4 Milliarden Jahre langen Geschichte entwickelt und dabei auch immer wieder verändert. Das wirkte sich zum Beispiel auf die Zusammensetzung der Atmosphäre und damit auf das Klima aus. So vermutet man, dass es im späten Proterozoikum, in einer Zeit zwischen 750-580 Mill. Jahren, mehrfach zu Gesamtvereisungen der Erde gekommen ist (Schneeballerde). Als Ursache wird der Zerfall des damaligen Superkontinents Rodinia angesehen. Die Aufteilung in kleinere Kontinente soll zu einer Erhöhung der Niederschläge geführt haben, dass im Regenwasser gelöste Kohlenstoffdioxid bewirkte eine chemische Verwitterung von kalkhaltigen Gesteinen und die Einschwemmung von Hydrogencarbonat in die Ozeane. Dort kam es zur Ausbildung von Kalk und zur Bildung von Kalksedimenten auf diese Weise wurde Kohlenstoffdioxid der Atmosphäre entzogen und in der Folge kam es zu einer starken Abkühlung wegen fehlendem Treibhausgaseffekt (Schüring 2001). Aber auch starke vulkanische Tätigkeit und der Ausstoß großer Mengen an Schwefelgasen in die Stratosphäre könnten die Sonneneinstrahlung abgeschwächt haben (Fischer 2017).

Die verschiedenen Teilkreiläufe des Kohlenstoffs auf der Erde

Abfallüberschuss

Abfallüberschuss, die dauerhafte Sedimentation der Abfälle von Lebewesen, führte im Laufe der Erdgeschichte zu Sedimentgesteinen. Bestandteile dieser oft kilometerdicken Sedimente können in erdgeschichtlichen Zeiträumen über geochemische Kreisläufe wieder aufs Neue von Lebewesen genutzt und in Lebewesen eingebaut werden. Auch die Nutzung solcher Sedimente als Brennstoffe und Ausgangsmaterial für die chemische Industrie ist ein Recycling von Abfallüberschüssen aus früheren geologischen Epochen. Bei dieser Nutzung werden aber in für geologische Zeiträume sehr kurzer Zeit große Mengen neuer Abfallstoffe produziert, zum Beispiel nicht abbaubare Kunststoffabfälle und klimawirksames Kohlenstoffdioxid.

Geiseltalsee, ehemaliges Braubkohleabbaugebiet (Google-Earth)

Energiefluss

Bei den Lebensprozessen werden die aufgenommenen Stoffe umgewandelt. Bei dieser Umwandlung in chemischen Reaktionen wird Energie umgesetzt. Gemäß dem zweiten Hauptsatz der Thermodynamik wird dabei immer ein Teil der umgesetzten chemischen Energie irreversibel in Wärmeenergie umgewandelt. Praktisch bedeutet dies eine Energieentwertung, die umgangssprachlich im allgemeinen als „Energieverbrauch“ bezeichnet wird. Für die Aufrechterhaltung der Lebensvorgänge ist deshalb eine ständige Energiezufuhr von außen notwendig. Auf der heutigen Erde kommt diese zugeführte Energie zum großen Teil von der Sonne.

Da die Sonne noch über 6 Milliarden Jahre in gleicher Form Energie liefern wird, werden auf der Erde alle Energieformen, die sich von der Sonnenenergie ableiten lassen, also neben der direkten Solarenergie Wind- und Wasserenergie und Energie aus Biomasse, als regenerative Energien bezeichnet. Den Gegensatz  bilden Energieformen, die durch die Verbrennung von fossilen Brennstoffen (Kohle, Erdöl, Erdgas) bereitgestellt werden, denn diese organischen Abfallstoffe früherer Erdzeitalter sind begrenzt und ihre Ergänzung durch neue organischen Abfallstoffe benötigt geologische Zeiträume, in geschichtlichen Zeiträumen können Sie sich nicht regenerieren.

Mögliche Beispiele

Lebewesen als Konsumenten:

Grundsätzliche Fragen:

Was wird „verbraucht“?

Was bedeutet „Sparsamkeit“, was „Verschwendung“?

Wie hängen Konsum, Produktion und Abfall zusammen?

Wie hängen „Energiekonsum“ und „Stoffkonsum“ zusammen?

  • Konsum von Spitzmaus und Elefant (Abhängigkeit des Stoffumsatzes von der Körpergröße, Bergmann’sche Regel, Kleinheit von Inselarten). „Die Beziehung zwischen dem Energiehaushalt und der Körpergröße der Tiere ist eine der spannendsten, ungelösten Fragen in der vergleichenden Physiologie.“ (Heldmaler,Neuweiler,Rössler 2013)
  • Zucker, der aus Bäumen regnet (Zucker als Abfall Phloemsaft konsumierender Blattläuse, siehe Titelfoto) „Die Blattlaus als Verschwender (?)“ https://www.e-periodica.ch/digbib/view?pid=fng-001:1978:67::208#64
  • Chilesalpeter (die Lagerstätten in der Atacama-Wüste und in anderen Trockengebieten und Inseln sind Reste von abgelagertem, harnsäurereichem Vogelkot)
  • Kreislaufwirtschaft benötigt Energie (Erdwärmeheizung als Modell für Kreislaufwirtschaft, hinterfragen des Begriffes „Energieverbrauch“)
  • Leben und Konsum in einer Raumstation (Für lange Reisen in einem Raumschiff oder lange Aufenthalte in Stationen auf dem Mond und auf dem Mars ist die Frage des Konsums essenziell. Denn die Möglichkeiten, Vorräte mitzunehmen, sind begrenzt. Deshalb beschäftigen sich Wissenschaftler schon seit längerem mit den Möglichkeiten, in dem begrenzten Raum eines Raumschiffes oder einer Raumstation mit bioregenerativen Lebenserhaltungssystemen, also Photobioreaktoren, die biologische Stoffkreisläufe ermöglichen, wodurch das Mitführen von Vorräten und die Produktion von Abfall minimiert wird. Neben Pflanzen spielen dabei vor allem Mikroalgen eine entscheidende Rolle).

Lebensstrategien bzw.  Lebensformen und Konsum

Welche besonderen Lebensformen sind mit bestimmten Formen des Konsums verbunden?

  • Wasserverbrauch von Wüstentieren (z.B. Kängururatte Dipodomys, Oryxantilope, Dromedar, Dunkelkäfer Onymacris)
  • Wie Pflanzen Wasser sparen (Sukkulenz, Verdunstungsschutz, zum Beispiel durch Oberflächenverringerung und Oberflächenverdichtung; physiologische Anpassungen wie C4, diurnaler Säurezyklus)
  • Massenvermehrung (Gradation): Heuschreckenschwärme (wie sie entstehen und sich entwickeln)
  • Konsumstopp: Winterruhe, Winterschlaf, Winterstarre, Austrocknungsresistenz

Der Einfluss von Konsum und Abfall auf Ökosysteme

  • Sauerstoffverbrauch in Gewässern („Umkippen“ von Gewässern, Prinzip der Pflanzenkläranlage)
  • Berge aus Abfall – Gebirge aus Sedimenten und was mit ihnen geschehen ist und geschehen wird oder Erdgeschichte als Konsumentengeschichte
  • Von Erdöl zu Plastik (biogene Abfallstoffe aus früheren erdgeschichtlichen Epochen werden zu anthropogenen Abfallstoffen der Gegenwart)
  • Torf, Kohle, Erdöl, Erdgas
  • Hochmoore: Mehr Abfall als Verbrauch
  • Was wird aus dem Abfall vom Blattfall? – Durch den jährlichen Laubfall fällt in sommergrünen Wäldern jeden Herbst eine große Menge organischen Abfalls an, der schnell aufgearbeitet wird.
  • Primärproduktion und Trophieebenen (Nahrungsketten können umso länger werden, je höher die Primärproduktion ist: Vergleiche von Wüste – Regenwald, tropisches Meer – marines Auftriebsgebiet)

Menschen als Konsumenten

  • Der letzte Baum der Osterinseln (die Osterinseln sind – möglicherweise – ein Beispiel dafür, wie eine menschliche Gesellschaft durch unbedachte Nutzung der natürlichen Ressourcen ihre eigenen Lebensgrundlagen zerstörte und daran zu Grunde ging, Diamond 2011)
  • Der Mensch als Verursacher quartärer Aussterbewellen (anthropogen bedingter Verlust der Biodiversität)
  • Kunststoffe (Plastikmüllstrudel in Pazifik und Atlantik; Mikro- und Nanoplastik in Lebensmitteln; abbaubare Kunststoffe)
  • Verbrauch von Sand und Kies
  • Seltene Erden – die Würze von High Tech (Herkunft, Verbrauch, Recycling)
  • Fleischkonsum

Quellen

Braungart, M., McDonough, W. (2008): Einfach intelligent produzieren. Cradle to cradle. Berlin: Berliner Taschenbuchverlag.

Bauman, Z. (2009): Leben als Konsum. Hamburg: Hamburger Edition.

Diamond, J (20113): Kollaps: Warum Gesellschaften überleben oder untergehen. Frankfurt: Fischer-Taschenbuch.

Gerten, G. (2018): Wasser-Knappheit, Klimawandel, Welternährung. München: C.H. Beck.

Heldmaler,, G., Neuweiler, G., Rössler, W. (2013): Vergleichende Tierphysiologie. Berlin, Heidelberg:  Springer.

Hengeveld, R. (2012): Wasted World – How our consumption challenges the Planet. Chicago: Chicago Univ.Press.

Kattman, U. (Hrsg., 2004): Bioplanet Erde. UB 299 (28.Jg.), Seelze: Friedrich.

Lampel, G. (1978): Die Blattläuse, eine wenig beachtete Insektengruppe. In: Bulletin der Naturforschenden Gesellschaft Freiburg. Band 67, Heft 1, S. 45–68

Looß, M. (1999): Abfall und Recycling. UB 247 (23.Jg.): 4-13, Seelze: Friedrich.

Probst, W. (2009): Stoffkreisläufe. Unterricht Biologie 349 (33. Jg.), S. 2-11, Seelze: Friedrich.

Reichholf, J. H. (1992): Der schöpferische Impuls: eine neue Sicht der Evolution. Stuttgart: DVA

Schmidt-Bleek, F. (1997): Wieviel Umwelt braucht der Mensch? Faktor 10 – das Maß für ökologisches Wirtschaften. München: dtv.

Zuckerkonsum von Kindern

Plastik sammelnde Aqua-Drohne

Algen für Bioplastik

Schneeballerde

Lars Fischer: https://www.spektrum.de/news/machten-schwefeltropfen-die-erde-zur-eiskugel/1457163

Joachim Schüring: Schneeball Erde. (Memento vom 12. Februar 2013 im Webarchiv archive.is) spektrumdirekt, 13. August 2001.

Mooswand

LINK-NAME
Moose im Rasen? An Mauern?Auf Dächern? Auf Wegen? Auf Grabsteinen?

Um Gottes willen, was kann man dagegen tun? Nun, es gibt viele Hilfen. Wenn man bei Google „Moosentferner“ eintippt, erhält man derzeit 450.000 Ergebnisse! Da liest man zum Beispiel diese beruhigende Nachricht:

„Geht es darum, große Flächen, Granitpflaster, Waschbetonplatten, Pflastersteine einer gründlichen Moosentfernung zu unterziehen, ist ein Moosentferner aus dem Fachhandel die beste Methode. Er erspart Arbeit und Zeit. Im Handel gibt es viele wirksame Moosentferner, die weder die Untergründe angreifen, noch schädliche Stoffe in Erde und Grundwasser leiten. Sollen Carports, empfindliche Grabsteine oder vereinzelte Beetplatten behandelt werden, sollte jeweils dafür besonders geeignetes Antimoos ausgewählt werden. Der Handel hält für jede Anwendung die passenden Mittel gegen den Moos- und Algenbefall bereit.“ (unkrautvernichter-shop)

Etwas verwirrend für den solchermaßen beruhigten Hobbygärtner sind dann allerdings Zeitungsmeldungen, in denen darüber berichtet wird, dass man in Feinstaub-belasteten Städten versucht, diesem Übel mit „Mooswänden“ zu begegnen. Eine solche Mooswand von 100 m Länge wurde zum Beispiel in der Feinstaub-Metropole Stuttgart am Brennpunkt Neckartor aufgestellt.

„Flächige Vertikalbegrünung“ gegen Feinstaub

In Berlin gibt es mittlerweile ein Startup Unternehmen, das Hightech-Mooswände für Innenstädte aber auch für Innenräume anbietet. Eine Standard-Mooswand von 16 m2 mit einer integrierten Sitzbank ist für 22.000 € zu haben. Mehrere Städte, nicht nur Dresden, Essen und Reutlingen sondern auch Oslo und Hongkong, haben sich mittlerweile schon Mooswände angeschafft und selbst hier in meiner Umgebung am Bodensee, in Überlingen, wird diskutiert, ob man bei der Landesgartenschau 2020 nicht eine solche Mooswand aufstellen sollte.

Die Firma Green City Solution bewirbt ihre Moosinstallationen  als „die Lösung zur nachhaltigen Verbesserung der Stadtluft“. Die Geschäftsidee: „In Städten, wo Luftreinhaltung eine große Herausforderung ist, überleben Moose aufgrund ihres Bedarfs an Wasser und Schatten … kaum. Die Kombination von schattenspendenden Pflanzen, einer vollautomatisierten Wasser- und Nährstoffversorgung und modernster Internet of Things-Technologie (IoT) kann dieses Problem lösen. Gleichzeitig können die Filterleistung und die Bedürfnisse der Pflanzen gemessen und analysiert werden. So entsteht ein intelligenter, natürlicher Luftfilter für die Stadt: der CityTree“.

Eigenartig, einerseits werden größte Anstrengungen unternommen, um unerwünschte Moose und Flechten aus Städten und Siedlungen und aus Gärten und Parks zu verdrängen. Andererseits werden große Summen aufgebracht, um den als Luftverbesserer hoch erwünschten Moosen ein Leben in Stadtzentren zu ermöglichen.

Wie unterscheiden sich Moose von anderen Pflanzen?

Moose sind vermutlich die ältesten Landpflanzen. Bevor es Bärlappe, Schachtelhalme, Farne und Samenpflanzen gab, breiteten sich moosähnliche Pflanzen auf der Erdoberfläche aus. Dabei sind die grünen Moospflänzchen – anders als bei den anderen genannten Pflanzengruppen – nicht die Sporophytengeneration sondern die Gametophyten. Auf ihnen entstehen Archegonien  mit je einer Eizelle und Antheridien mit zahlreichen begeißelten männlichen Keimzellen („Spermatozoiden“). Zur Befruchtung wird Wasser benötigt. Aus den befruchteten Eizellen entwickeln sich die Sporophyten, gestielte Sporenkapseln, die immer mit den grünen Gametophyten verbunden bleiben und auch weitgehend von diesen versorgt werden. Nur während des Wachstums bilden sie auch mehr weniger eigenes grünes Gewebe zur Fotosynthese. Mit Farnpflanzen, Bärlappen und Samenpflanzen haben Moose gemeinsam, das sich aus der befruchteten Eizelle zunächst ein Embryo entwickelt, der von einer sterilen Zellhülle umgeben ist. Sie werden deshalb zusammen diesem Pflanzen als Embryophyten bezeichnet. Im Gegensatz zu den anderen Pflanzen haben Moose aber nur ein sehr rudimentär ausgebildetes oder völlig fehlendes Leitgewebe. Die Wasserleitung findet zum großen Teil nicht innerhalb der Moospflänzchen, sondern kapillar in den engen Zwischenräumen zwischen den dichten blätterten Moostrieben statt. Ein Moospolster oder ein Moosrasen kann deshalb sehr viel Wasser halten, ähnlich wie ein Schwamm. Alle anderen Pflanzen haben gut ausgebildete Leitgewebe für Wasser und Assmilate und werden den Moosen als „Gefäßpflanzen“ oder Tracheophyten gegenübergestellt.

Damit hängt zusammen, dass die Moose auch keine echten Wurzeln haben und Wasser und Nährmineralien über alle oberirdischen Pflanzenteile aufnehmen. Dies bedeutet,  dass sie anders als die Gefäßpflanzen auch nur wenig gegen Wasserverdunstung geschützt sind. Anders als fast alle Gefäßpflanzen können die meisten Moose aber in fast vollständig ausgetrocknetem Zustand überdauern. Sie erwachen zu neuem Leben, wenn sie wieder befeuchtet werden. Auf diese Weise sind eine ganze Reihe von Moosarten sehr gut an die Besiedlung freier Felsflächen angepasst, vorausgesetzt dass diese Felsflächen wenigstens eine Zeit lang – zum Beispiel während der Schneeschmelze – gut befeuchtet werden. Auch andere vertikale Flächen wie Baumrinden und einzelne Felsblöcke, auch Mauern,Dächer, Grabsteine, Zaunpfosten oder Skulpturen können von Moosen besiedelt werden, denn Moose benötigen keinen Boden.

Bis heute ist diese ursprüngliche Pflanzengruppe weit verbreitet und erfolgreich, allerdings nur dort, wo die schneller und höher wachsenden Gefäßpflanzen den Moosen Luft und Nährmineralien nicht streitig machen.

Mit Moosen bewachsene Felswand im Karadj-Tal, Elbursgebirge, Nordiran. Es dominieren die Arten Grimmia orbicularis, G. ovalis und Schistidium anodon (Foto W.Probst, Juli1977)

Feinstaub

In den 1980iger und 90iger Jahren war Luftverschmutzung durch schwefeldioxidhaltige Abgase das Hauptproblem. Durch  Rauchgasentschwefelungsanlagen in allen großen Kraftwerken konnte dieses Problem deutlich verringert werden. Das gegenwärtige Problem sind Stickstoffoxide und Feinstaub und Feinstaub wird teilweise durch Stickstoffoxide verursacht.

Als Feinstaub bezeichnet man die Masse aller im Gesamtstaub enthaltenen Partikel, deren Durchmesser kleiner als 10 µm ist (PM10 von engl. particle matter). Er kann natürlichen Ursprungs sein (beispielsweise als Folge von Bodenerosion) oder durch menschliches Aktivitäten produziert werden. Wichtige Feinstaubquellen sind Energieversorgungs- und Industrieanlagen, etwa in der Metall- und Stahlerzeugung. In Städten und an Hauptverkehrswegen  ist der Straßenverkehr die dominierende Staubquelle. Dieser Feinstaub ist für die Gesundheit besonders gefährlich, da er über die Atemluft tief in die Lungen eindringt und in den Schleimhäuten Krankheiten wie Asthma oder Krebs auslösen kann. Je kleiner die Staubpartikel, desto gefährlicher sind sie für die Gesundheit. Deshalb wird noch weiter unterteilt in PM2,5  mit Korndurchmesser unter 2,5 µm und Ultrafeinstaub unter 0,1 µm. Nach der Feinstaubrichtlinie der EU darf der Grenzwert von 50 μg/m3 Luft an einem Messpunkt nur an 35 Tagen im Jahr überschritten werden. In vielen Städten, z. B. in Stuttgart, wird dieser Richtwert ständig überschritten, im letzten Jahr an 63 Tagen (Thielen 2017).

Feinstaubzusammensetzung zweier PM10 Proben aus Stuttgart und Mannheim vom 1.6. und 1.2.2006 (Quelle LUBW)

Ein wichtiger Anteil des Feinstaubs – meist zwischen 20 und 50% – besteht aus Ammoniumsalzen, insbesondere Ammoniumnitrat. Dieses Ammoniumnitrat entsteht, wenn Stickstoffdioxid und Ammoniak in der Atmosphäre aufeinandertreffen. Stickstoffoxide entstehen bei allen Verbrennungsprozessen in stickstoffhaltiger Atmosphäre, umso mehr, je höher die Verbrennungstemperatur und der Druck sind. In modernen Verbrennungsmotoren von Kraftfahrzeugen sowohl bei Benzin- wie bei Dieselmotoren sind diese Bedingungen für die Stickstoffoxidbildung sehr günstig. Während der Schwefel des Schwefeldioxids aus den Brennstoffen kommt, kommt der Stickstoff der Stickstoffoxide also weitgehend aus den 78% N2 in der Atmosphäre. Stickstoffoxide  können durch Katalysatoren aus den Abgasen von Verbrennungsmotoren zu einem guten Teil entfernt werden. Dabei wird aber zum Teil Ammoniak (NH3) freigesetzt. Außerdem ist die moderne Landwirtschaft eine bedeutende Ammoniakquelle. Ein überall sichtbares Zeichen für die starke Zunahme des Ammoniumgehaltes in der Luft ist die Zunahme bestimmter Flechtenarten, z. B. der auffälligen Gelbflechte (Gattung Xanthoria).

Moose als Luftfilter

Mit Moosen bewachsener Betonblock (Foto W.Probst,2017)

Zunächst einmal sind Moosrasen und Moospolster schon wegen ihrer großen Oberfläche besonders geeignete Staubfänger für die Luftreinigung. Die Moostriebe sind dicht mit kleinen Blättchen besetzt. Nach Berechnungen von Frahm und Sabovljevic (2007) beträgt die Oberfläche von einem 1 cm hohen Moosrasen etwa das dreißigfache der Grundfläche, wobei sich natürlich hier je nach Moosart beträchtliche Unterschiede ergeben dürften. Der Staub wird jedoch nicht nur durch diese große Oberfläche festgehalten, es gibt auch noch eine chemische Bindung: Die Zellwände von Moosen wirken als Kationenaustauscher. Wenn sich Staub auf der feuchten Blättchenoberfläche absetzt und zum Beispiel Ammoniumnitrat in Lösung geht, werden die NH4+-Ionen gegen Wasserstoffionen ausgetauscht und gebunden.

Darüber hinaus bleiben die abgelagerten Staubteilchen nicht nur auf der Oberfläche liegen, die gelösten Salze werden zusammen mit Wasser direkt durch die Zellmembran aufgenommen. Außerdem konnte nachgewiesen werden, dass auch lösliche Stoffe mindestens zum Teil von reichlich auf den Moosplättchen sitzenden Bakterien abgebaut werden. Die Moose nehmen also den eingefangenen Staub direkt in ihrer Vegetationskörper auf. Bei den Gefäßpflanzen muss er aus der Luft erst in den Boden gelangen, zum Beispiel indem er von den oberirdischen Pflanzenteilen durch Regen abgewaschen und mit der Lösung in den Boden gebracht wird. Dabei ist diese Nährmineralresorption durch die Zellmembran der Moosblättchenzellen – ähnlich wie bei Wurzelhärchen (Rhizoiden) der Gefäßpflanzen – vermutlich kein rein physikalisch bewirkter Diffusionsvorgang, es sind auch aktive Aufnahmeprozesse beteiligt. Auf diese Zusammenhänge hat der Bryologe Jan-Peter Frahm bereits zu Beginn des Jahrtausends hingewiesen und dies auch durch experimentelle Untersuchungen belegt  (Frahm und Sbovljevic 2007).  Er machte den Vorschlag, an Straßenrändern, insbesondere an Autobahnen und auf Autobahnmittelstreifen Moose anzusiedeln, um die durch den Verkehr belastete Luft zu verbessern.

Ammoniumnitrat-haltige Feinstaubpartikel lösen sich auf der feuchten Blattoberfläche. Ammoniumionen werden teilweise gegen Wasserstoffionen an Zellwandmolekülen ausgetauscht, was zu einer leichten Ansäuerung führt. Bei der Aufnahme durch die Zellmembran spielen neben reiner Diffusion aktive Prozesse ein Rolle.

Für die Dachbegrünung werden Moosmatten schon längere Zeit angeboten. Die Anbieter weisen darauf hin, dass damit auch Dächer begrünt werden können, die für eine herkömmliche Dachbegrünung aufgrund der Statik zu schwach wären oder ein zu großes Gefälle hätten, da die Moosmatten relativ leicht sind. Auch auf eine Schubsicherung des Bodensubstrats kann verzichtet werden, da Moose keine Wurzeln haben sondern mit ihren Rhizoiden direkt am Untergrund haften. Solche Mooosmatten sind wesentlich günstiger als die „City-Trees“ der Firma Green City Solutions. Das Argument für die IoT-Mooswand ist, das sie so gesteuert wird, dass für die Moose immer optimale Wachstumsbedingungen herrschen. Hierzu dient zum Beispiel ein Bewässerungssystem, das Wasser von einem integrierten Regenwasserspeicher erhält, und Deckpflanzen, welche die Moose vor zu starker Besonnung schützen. Die notwendige Energie stammt von Solarzellen auf der Oberseite der Wand. Zwar sterben Moose beim Austrocknen nicht ab, aber als Feinstaubfänger werden sie in diesem Zustand latenten Lebens weitgehend nutzlos. Gerade an trockenen Sommertagen, wenn die Feinstaubbelastung in Innenstädten besonders groß sein kann, ist es aber wichtig, dass die Moosfilter voll funktionsfähig bleiben.

Was geschieht mit der Moos-Biomasse?

Der Feinstaub ist für Moose also Dünger, der sie – wenn die anderen Umweltbedingungen passen – ausgezeichnet wachsen lässt. Unter natürlichen Bedingungen wandelt sich die durch die Moospolster gebildete Biomasse allmählich in Humus um. Wenn dieser Vorgang – zum Beispiel auf Felswänden im Hochgebirge oder am Rand sich zurückziehender Gletscher – lange genug anhält, siedeln sich dann auf der Humusschicht schließlich auch Gefäßpflanzen an. Bei Moosmatten als Straßenrandbegleiter könnte dies ähnlich funktionieren, ebenso bei Moosmatten auf Hausdächern. Wie es bei der Hightech-Mooswand ablaufen könnte, ist mir allerdings nicht ganz klar. Immerhin geben die Hersteller eine Funktionsdauer von wenigstens 20 Jahren an!

Alternativen zu IoT-Mooswänden

“ In Japan reißen die Gärtner die Gräser zwischen den Moosen aus, um einen schönen Garten zu bekommen. Trauen Sie sich das auch?“ (K. Horn)

Moose würden an vielen Stellen, auch in Städten und an Verkehrswegen, wachsen, wenn man sie nicht bekämpfen sondern fördern würde. Diese Förderung ist zunächst einmal eine Frage der Einstellung zu Moosen. Es geht darum, diese wirklich ästhetisch äußerst ansprechenden und dekorativen Gewächse ins Bewusstsein von Hobbygärtner und Naturfreunden zu bringen. Ansätze dazu könnte man zum Beispiel bei Terrarianern finden oder auch bei Freunden der Bonsai-Kultur. Denn diese aus Japan stammende und bei uns durchaus angesehene Variante des Hobbygärtnertums greift häufig auf Moose als dekorative Elemente zurück. Als Anleitung für einen Moosgarten oder zumindest eine moosfreundliche Pflege des Gartens kann ein Buch des schon genannten Biologen Jan-Peter Frahm „Mit Moosen begrünen“ (4. A.2014) dienen. Sehr gute und detaillierte Anleitungen zur Moosansiedelung und Moosgartenpflege enthält das englischsparchige Buch „Moss Gardening“ von George Schenk (1997). Aber auch schon eine Umkehr der Ratschläge, die man im Internet zur Moosbekämpfung,  finden kann, zeigen, wie man diesen nützlichen kleinen Pflanzen im Garten mehr Raum geben kann:

Brunnnefigur im Hanbury Garden, La Mortola, Italien (Foto Probst April 1980)

Moose an Mauern und in Mauerfugen und Fugen von Plattenwegen wachsen lassen.

Moose in Staudenbeeten nicht entfernen sondern wachsen lassen.

Moose von Baumstämmen und Ästen nicht abkratzen.

Moose von Steinen oder Figuren nicht entfernen sonder bei großer Trockenheit wässern.

Moosbewuchs auf Dächern begrüßen und nicht entfernen.

Moose in Rasenflächen nicht bekämpfen sondern fördern, z. B. durch Zulassen schattiger Bereiche, Verzicht auf Dünger, unregelmäßiges, nicht zu häufiges Mähen, Verzicht auf Vertikutieren.

Mauermoose (Grimmia pulvinata und Tortula muralis,Foto Probst 2017)

An feuchten Uferbereichen von Gartenteichen gedeihen Moose sehr gut, wenn die Nährmineralversorgung eher dürftig ist und dadurch die Konkurrenz größerer Pflanzen gering bleibt.

Moosrasen im Blumenbeet in November (Foto Probst 11.2017)

Auch die Grünämter der Städte und Gemeinden könnten – unabhängig von der Aufstellung von High-Tech-Mooswänden –i in derselben Weise wie die Gartenbesitzer etwas für die Förderung des Moosbewuchses tun. Das gezielte Ansiedeln von Moosen und die Beschilderung von angelegten Moosgärten nach japanischem Vorbild könnten zudem Vorbildcharakter für Hobbygärtner bekommen. Besonders geeignet hierfür wären Bundes- und Landesgartenschauen.

Sporophyten des Mauer-Drehzahnmooses (Tortula muralis) in der Abendsonne (Foto Probst 10.12.2005)

Quellen

Dunk, K.v.der (1988): Das Dach als Lebensraum II. Zu den Moosen aufs Dach. Mikrokosmos 77(10): S.300-307

Frahm, J.-P. (4.A.,2014): Mit Moosen begrünen – eine Anleitung zur Kultur (Gärten, Dächer, Mauern, Terrarien, Aquarien, Straßenränder). Jena: Weissdorn

Frahm, J.-P., Sabovljevic, M. (2007): Feinstaubreduzierung durch Moose. In: Immissionsschutz: S.152-156

Frey, W., Probst, W. (1973): Die Popstermoosvegetation im Karadjtal (Elbursgebirge, Nordiran). Bot. Jahrb. Syst. 93 (3) ,S. 404-423

Martin, A. (2015): Magical World of Moss Gardening. Portland (Oregon, USA): Timber Press

Schenk, G. (1997): Moss Gardening: Including Lichens, Liverworts, and Other Miniatures. Portland (Oregon, USA): Timber Press

Thielen, S. (2017): Pilotstudie Mooswand, smnstuttgart-blog. https://smnstuttgart.com/2017/09/05/pilotstudie-mooswand/

https://www.unkrautvernichter-shop.de/Algen-Moosentferner-Pflasterstein-Rasen

http://www4.lubw.baden-wuerttemberg.de/servlet/is/18788/

http://www.deranderegarten.de/

http://www.stuttgarter-nachrichten.de/inhalt.luftschadstoffe-in-stuttgart-mooswand-senkt-feinstaubkonzentration.c0a6ec6a-96bc-46a0-b272-c7b069a1217c.html

http://www.deutschlandfunkkultur.de/weltweit-erster-versuch-in-stuttgart-mit-einer-mooswand.1001.de.html?dram:article_id=383603

http://www.bast.de/DE/Verkehrstechnik/Publikationen/Veranstaltungen/V3-Luftqualitaet-2008/luftqualit%C3%A4t-vortrag-frahm.pdf?__blob=publicationFile&v=1

http://bryophytes.science.oregonstate.edu/mosses.htm

http://hallimasch-und-mollymauk.de/ohne-moos-nix-los-moosgraffitis/

Moosfotos: https://www.limnoterra.de/thematische-bildergalerien-land/8-bildergalerie-moose/

Der Mensch als Beschützer der Natur

LINK-NAME
In dem Beitrag „Zehn Jahre Nachhaltigkeitsstrategie“ habe ich G. C. Daily zitiert: ‚Until the next big asteroid hits us, the future of life on earth will depend much more on humanity than on anything else“  (G. C. Daily, Nature 411, 17 . Mai 2001,p.245). Damit wird – zwar mit einem relativierend fatalistischen Ausblick – die Erkenntnis zum Ausdruck gebracht, dass die Menschheit eine große Verantwortung für den Bioplaneten Erde trägt. In dieser Rolle des Erdenbeschützers sehen sich vor allem Naturschützer und Umweltschützer. „Natur- und Umweltschutz“ ist eine Wortkombination, die sich in vielen politischen Programmen, Forderungskatalogen und Absichtserklärungen findet. Doch zunächst einmal sind diese beiden Schutzziele keineswegs identisch.

Natur- und Umweltschutz

Während es dem Naturschutz darum geht, die Natur vor dem Menschen und den menschlichen Aktivitäten zu schützen, ist es das Ziel des Umweltschutzes, die Umwelt für den Menschen zu bewahren (Hupke 2015). In den 1990 er Jahren wurde versucht, diese anthropozentrische Orientierung des Umweltschutzes durch den Begriff der „Mitwelt“ und des „Mitweltschutzes“ zu ersetzen und damit Natur- und Umweltschutz zu vereinen (Meyer-Abich 1990),  Dieser Begriff hat sich allerdings nicht durchgesetzt.

Ein wichtiges Ziel des Naturschutzes, vielleicht sogar das wichtigste Ziel, ist der Erhalt der biologischen Vielfalt. Dabei geht es um die Vielfalt der Arten und die Vielfalt der Lebensräume bzw. Ökosysteme und schließlich auch noch um die genetische Vielfalt innerhalb der Arten, in den Populationen.

Alle Fachleute sind sich weitgehend einig darüber, dass das von der menschlichen Zivilisation verursachte Aussterben von Arten eine katastro­phale Dimension angenommen hat. In der Folge der UN-Konferenz für Umwelt und Entwicklung in Rio de Janeiro wurde deshalb schon 1993 ein „Übereinkommen zum Schutz der biologischen Vielfalt“, die sogenannte Bi­odiversitätskonvention (Convention on Biological Diversity – CBD) getroffen. Dieses Abkommen wurde mittlerweile von 188 Staaten – auch von der EU – unterzeichnet und in deren Gesetzgebung übernommen. Als Begründung für die Notwendigkeit, biologische Vielfalt zu erhalten, werden in dieser  in dieser Konvention folgende Punkte angeführt:

  1. Ökonomische Interessen. Vielfalt ist eine genetische Ressource und eine Ressource an Naturstoffen. Artenverlust führt zu einer Beeinträchtigung poten­tieller Nutzungsfähigkeit. Wenn eine Art ausgerottet wird, wird damit menschliche Handlungsmöglichkeit für die Zukunft unwiderruflich beschränkt.
  2. Ökologische Interessen. Das Wirkungsgefüge der Biosphäre, die Prozesse des Energieflusses und des Recyclings, sind auf Vielfalt angewiesen. Sie sind die Basis für den Erhalt der „natürlichen Lebensgrundlagen“.
  3. Gesellschaftliche und kulturelle Interessen. Biologische Vielfalt spricht uns unmittelbar emotional an. Sie dient der Befriedigung emotionaler Bedürfnisse. Natur, insbesondere auch ursprüngliche, vom Menschen nicht oder wenig beein­flusste, kann als „Kraftquelle“ genutzt werden. Aber auch reich strukturierte traditionelle Agrarlandschaften, wie sie für Mitteleuropa bis vor 50 Jahren charakteristisch waren, haben einen besonderen ästhetischen Wert für Erholungssuchende.
  4. Biologische Vielfalt ist ein Wert in sich. Die Schöpfung ist es Wert, um ihrer selbst willen erhalten zu werden. Dieser Argumentation folgt vor allem die Tiefen­ökologie und die „radikale Ökologie“.

Genaugenommen sind allerdings nur der letzte Punkt  und eingeschränkt der zweite Punkt wirkliche Naturschutzargumente. Die beiden anderen Begründungen sind letztlich auf den Menschen bzw. die menschliche Gesellschaft bezogen und damit als Ziele des Umweltschutzes zu werten.

Artenschutz: Seltene Arten häufig machen?

Artenschutz ist bis heute ein wichtiger wenn nicht der wichtigste Teil der Naturschutzarbeit. Rote Listen dienen dazu, die Gefährdung von Arten einzuschätzen. Sie spielen bei der Bewertung von allen Eingriffen in den Naturhaushalt eine wichtige Rolle. Aber was bedeutet „Artenschutz“ eigentlich? Schon 1987 fragte Hermann Ellenberg „Was will der Naturschutz eigentlich – seltene Arten häufig machen?“. Er weist zu Recht auf die Probleme mit „Roten Listen“ hin, die nicht nur zeitlich begrenzt sind (etwa auf die letzten 120 Jahre) sondern vor allem auch räumlich auf die jeweilige politischen Grenzen. Außerdem haben seltene Arten nur einen geringen Anteil an der Individuenzahl einer Lebensgemeinschaft. Daraus ergibt sich logischerweise, dass sie auch für das Wirkungsgefüge eines Ökosystems, für Energieflüsse und Stoffkreisläufe, nur von untergeordneter Bedeutung sind. Ist es deshalb wirklich gerechtfertigt, dem Schutz solcher seltener Arten eine so hohe Bedeutung beizumessen? Ein besser begründbares Ziel ist der Erhalt einer großen Artenvielfalt. Sie hängt einmal von einer Vielfalt der Lebensräume zum anderen aber auch in starkem Maße von dem Nährmineralgehalt des Bodens ab. Der hohe Nitrat-und Phosphatseintrag, der einmal der Landwirtschaft zum anderen den Verbrennungsmotoren geschuldet ist, trägt dazu bei, dass auf hohe Nährmineralgehalt des Bodens angewiesene Pflanzen (sogenannte Stickstoff-Zeigerpflanzen) sehr gut gedeihen. Bei den krautigen Pflanzen sind das durchweg sehr schnell wachsende und hochwüchsige Arten. Schnell verdrängen sie die niederwüchsigen, langsam wachsenden („sparsamen“) Konkurrenten. Eine wichtige Voraussetzung für den Erhalt der Artenvielfalt ist deshalb, zumindest in Mitteleuropa, ein ausgeglichener Stoffhaushalt.  Artenvielfalt kann nur gesichert werden, wenn nicht mehr Nitrate und Phosphate in das System eingebracht als entzogen werden. Die im Rahmen des Klimaschutzes erhobene Forderung der CO2-Neutralität müsste im Hinblick auf die Biodiversität auch für Stickstoff- und Phosphorverbindungen erhoben werden.

Selektiver Artenschutz

Diptam – Dictamnus albus -, in Deutschland geschützte Art, nach der Roten Liste für Deutschland „gefährdet“ (Foto Probst 2004, Edelweiß bei Retzbach/Main)

Das öffentliche Engagement für zu schützende Arten verteilt sich nicht gleichmäßig auf alle Verwandtschaftsgruppe. Es gibt besondere Tier- und Pflanzengruppen, denen der Naturschutz mehr Aufmerksamkeit widmet als anderen. Bei den Pflanzen sind es zum Beispiel die Orchideen, bei den Wirbeltieren die Vögel und die Amphibien, bei den Wirbellosen etwa die Schmetterlinge oder die Bienenverwandten. Dies mag daran liegen, dass diese Organismengruppen besonders viele Menschen ansprechen und dass es besonders viele Hobbybotaniker und Hobbyzoologen gibt, die sich mit diesen Tiergruppen beschäftigen. Dies ist auch eine Ursache dafür, dass die Gefährdungssituation für diese Gruppen besonders gut untersucht ist. Im strengen Sinne naturwissenschaftliche Gründe, diese Artengruppen besonders zu schützen, sind aber nicht so leicht erkennbar. Teilweise werden ökonomische Gründe genannt: Bienen und „Wildbienen“ sind Bestäuber von Nutzpflanzen, Singvögel und Kröten vertilgen Schädlinge. Bei bestimmten seltenen Arten –  wie vielen Orchideen, Diptam oder Frühlings-Adonisröschen – wird angenommen, dass das Vorkommen dieser spektakulären Arten gleichzeitig ein Zeiger für ein insgesamt ein schützenswertes Ökosystem sind.

Ein weiterer Aspekt der besonderen Hervorhebung einzelner Arten ist ihre Werbewirksamkeit. Wenn bestimmte Tiere – wie der Fischotter, der Storch oder der Laubfrosch – vom Naturschutz in den Vordergrund gerückt werden, so hat dies damit zu tun, dass sich der Schutz und Erhalt dieser Tierarten bei einer breiten Öffentlichkeit besonders gut „verkaufen“ lässt.

Ein naturwissenschaftlich fundiertes Argument dafür, einzelne Arten als besonders schutzwürdig einzustufen, ist ihre Rolle als Schlüsselarten in bestimmten Ökosystemen. Darunter versteht man Arten, die einen unverhältnismäßig großen Einfluss auf die Artenvielfalt und Artenzusammensetzung eines Ökosystems nehmen können. Oft handelt es sich um Konsumenten höherer Ordnung, durch deren Fraßdruck auf besonders häufige Beutearten deren Konkurrenzkraft verringert wird, wodurch andere, vorher unterlegene Arten koexistieren können. Auch die Naturschutzmaßnahme der Beweidung wirkt sich so aus: durch den Fraßdruck der Robustrinder  – in diesem Falle Primärkonsumenten – werden Gehölze zugunsten offener Landschaftsformen zurückgedrängt. Auf den extensiv beweideten Flächen bleibt eine hohe Artenzahl an Pflanzen erhalten, davon profitieren auch Insekten und Vögel.

Naturschutz contra Umweltschutz

Es gibt einige unüberbrückbar scheinende Kontroversen zwischen Naturschutz und Umweltschutz, die sich mit der unterschiedlichen Zielsetzung erklären lassen. Besonders deutlich wird dies zum Beispiel bei den sogenannten „alternativen Energien“. Aus Sicht des Umweltschutzes ist es dringend erforderlich, bei der Bereitstellung von Energie auf regenerative Energiequellen zu setzen, denn nur dadurch können Ressourcen geschont und die – vor allem für die Menschheit gefährlichen –  Klimaveränderungen in Grenzen gehalten werden. Aus Sicht des Naturschutzes gefährden Windräder viele Vogelarten, Biogas und Biotreibstoffe führen zu großen Monokulturen, in Mitteleuropa zum Beispiel von Raps und Mais, welche der Biodiversität schaden. Auch Freiland-Solarparks erregen nicht ganz zu Unrecht die Kritik von Naturschützern, zum Beispiel vom BUND: „Für Vögel können Irritationen beim lokalen, regionalen und internationalen Vogelzug durch eine Spiegelwirkung der Paneel-Oberflächen entstehen. Bei sehr großen Freiland-Solarparks kann es zu einer Trennwirkung (Barrierewirkung) kommen, die durch die erforderliche Einzäunung verstärkt wird. Durch die Aufstellung der Anlagen gehen wertvolle Nahrungsflächen verloren, insbesondere für Tiere, die freie Räume benötigen.“ (http://www.bund-sh.de/uploads/media/Freiland-Solarparks.pdf )

Ein weiteres Beispiel für die unterschiedlichen Sichtweisen ist die Einstellung zu Wäldern und Waldbewirtschaftung. Die Forstwirtschaft argumentiert mit dem Ziel des Klimaschutzes, dass es im Sinne einer maximalen Kohlenstoffspeicherung am besten sei, Bäume dann zu fällen, wenn die Hauptzuwachsphase zu Ende geht. Der Naturschutz hält den Erhalt bzw. die Wiederherstellung von Urwäldern erstrebenswert, in die der Mensch nicht eingreift. In einem solchen Wald bleiben Bäume so lange stehen, bis sie durch natürliche Einflüsse umfallen oder absterben. Der Förster und Bestsellerautor Peter Wohlleben (2013,2017) argumentiert im Sinne dieses Urwaldschutzes (und damit gegen viele seiner Kollegen): Mit dem derzeit gängigen Begriff des Naturschutzes würde der Schutz echter, unberührter Natur verwässert. Wohlleben fände es viel sinnvoller, die Vielfalt ursprünglicher Lebensräume zu schützen und nur dafür den Begriff „Naturschutz“ anzuwenden. Damit folgt er den Argumenten der nordamerikanischen Naturschutzbewegung, die unberührte und unbeeinflusste Natur, „wilderness“, als höchstes Schutzziel sieht (Hendersen o.J.). Dies bedeutet aber auch, dass aus seiner Sicht die vielen mitteleuropäischen Naturschutzbemühungen, die dem Erhalt einer vielseitigen, extensiv genutzten Kulturlandschaft dienen, weniger dem Bereich Naturschutz als den Bereich Denkmalschutz zuzuordnen wären. „Da werden ursprüngliche Haustierrassen, etwa Konikpferde oder Heckrinder, in Naturschutzgebieten ausgesetzt, um eine Beweidung ausgestorbener europäischer Wildpferde und Auerochsen nachzustellen. Das ist zwar idyllisch, aber nichts anderes als extensive Landwirtschaft“ (Wohlleben 2013,S.139). Also soll man nicht länger Wachholderheiden beweiden, Riedwiesen mähen, Moore entkusseln, Heidegebiete plaggen und Wallhecken auf den Stock setzen?

Naturschutz und Landschaftspflege

Lanschaftspflege durch Schafe (Foto Probst, 2004, Fröruper Berge bei Flensburg)

Ich meine, eine differenzierte Betrachtung ist wichtig. Die in Mitteleuropa seit der letzten Kaltzeit in etwa 12 000 Jahren – also einer erdgeschichtlich sehr kurzen Zeitspanne – entstandene Landschaft war von Anfang an vom Menschen beeinflusst. Die menschliche Nutzung hat ein kleinräumiges Mosaik von Lebensräumen geschaffen und zu einer Artenvielfalt geführt, die sich vermutlich ohne den Menschen und seine Nutztiere nicht oder zumindest nicht so schnell entwickelt hätte. Diese Situation ist nicht ganz mit den großflächigen, weitgehend unberührten Naturräumen Nordamerikas zu vergleichen, die zudem durch die Kaltzeiten wegen der vorwiegend von Norden nach Süden streichenden Gebirge nicht so stark dezimiert wurden wie die Biozönosen Mitteleuropas.

Aus diesem Grunde kann Landschaftspflege im Sinne eines Landschaftsschutzes in Mitteleuropa durchaus dem Erhalt der biologischen Vielfalt und damit dem Naturschutz dienen. Allerdings sollten Pflegeeingriffe immer dem Prinzip der Eingriffsminimierung unterliegen und sich deutlich von Landschaftsarchitektur und Gartenbau unterscheiden. Diese Einschränkung gilt nicht unbedingt für Städte und Ballungsräume. Hier könnte eine „grüne“ Architektur und Gestaltung durchaus Biodiversität und Umwelt verbessern.

Die dicht besiedelten Landschaften Mitteleuropas sind – wie hier im Bodenseekreis – sehr reizvoll und haben ökologisches Potenzial. Skizze aus meinem Tagebuch vom Juni 2005, als wir uns nach einem Wohnort in Bodenseenähe umgesehen haben.

Der Erhalt unberührter, von menschlichen Eingriffen frei gehaltener Flächen hat auch in Mitteleuropa seine Berechtigung. Eine Beschränkung des Naturschutzes auf die „unberührte Natur“ wäre aber ein Fehler. Dies sei an einigen Beispielen gezeigt: In den heutigen Kulturlandschaften ist die „Überkompartimentierung“, also die Zerschneidung durch Verkehrswege und die Verinselung von Kleinbiotopen, ebenso ein Naturschutzproblem wie die „Unterkompartimentierung“ durch riesige Monokulturen. Von einem durch Ackerflächen umschlossenen Kleinkompartiment „Feldgehölz“ aus ist es z. B. für viele Tiere schwierig, in andere, ähnliche Biotope zu gelangen. Feldhecken begrenzen Kulturflächen, sie sind aber auch Verbindungswege zwischen Ökosystemen. Schutz, Pflege, Erhalt und Neupflanzung von Feldhecken  sind deshalb sinnvolle Naturschutzmaßnahmen. Ähnliches gilt für die Einrichtung und den Schutz von Ackerrandstreifen mit blühenden (mehrjährigen) Wildkräuter (Kirmer 2016). Besonders stark wirkende Grenzen sind Verkehrswege, weshalb man an einigen Stellen sinnvoller Weise so genannte Biotopbrücken über Autobahnen gebaut hat, um deren Areale zerschneidende Wirkung zu mindern. Auch die Einrichtungen von Krötentunneln unter Straßen dienen diesem Zweck.

Meeresschutz

Mangrove auf Qeshm,Straße von Hormuz,Iran; Einschub: Schlammspringer – Periophthalmus barbarus (Fotos Probst, 1976)

Meere bedecken 71 % der Erdoberfläche. Dieser größte zusammenhängende Lebensraum der Erde ist seit langem vielen verschiedenen menschlichen Einflüssen ausgesetzt, doch erst in den letzten Jahrzehnten wurde deutlich, dass auch die Ressourcen des Meeres und seine Kapazität für die Aufnahme von Abfällen und Schadstoffen – Stichwort Plastikmüll – begrenzt sind. Meeresschutz ist deshalb ein wichtiger Teil des Naturschutzes und des Umweltschutzes geworden. Moderne Fischereimethoden haben dazu geführt, dass Fischbestände bis zum Verschwinden zurückgegangen sind. Es konnte aber gezeigt werden, dass strenge Schutzvorschriften schnell zu einer Erholung von Beständen führen können. Besonders bedrohte dein Lebensräume sind die Korallenriffe, mit die artenreichsten Lebensräume der Erde, und die Mangrove-Gebiete als wichtige Brutstätten für Fische und Wirbellose und „natürliche Pflanzenkläranlagen“. Für beide Ökosysteme greifen die bisher ergriffenen Schutzmaßnahmen noch nicht. Die Wiederaufforstung von verschwundenen Mangroven erweist sich als sehr schwierig und bei den Korallenriffen dürfte die klimabedingte Veränderung der Meere (höhere Temperaturen, niedrigere pH-Werte) effektive Schutzmaßnahmen verhindern. Ein weiteres Problem bei Meeresschutz ist die politische Zuständigkeit für Schutzbestimmungen.

Plastikmüll war schon vor Jahrzehnten ein Problem, hier am Strand von Euböa, Griechenland, 1984  (Foto Probst)

Die große Zunahme von marinen Aquakulturen könnte zwar ein Weg sein, die Nutzung mariner Produktion nachhaltiger zu gestalten, derzeit sieht es aber so aus, als würden bei der Meeresbewirtschaftung die Fehler wiederholt, die man von der Landbewirtschaftung kennt.

Tierschutz

Hausschweine auf der Peloponnes,Griechenland, Sommer 2004 (Foto Probst)

Einige der Organisationen, die sich für Naturschutz und Umweltschutz stark machen, engagieren sich auch für Tierschutz. Dabei geht es nicht um den Erhalt der Artenvielfalt, dem Schutz gefährdeter Tierarten oder dem Schutz der Umwelt insgesamt, sondern um den individuellen Schutz von Tieren. Tieren soll ein „artgerechtes“ Leben ermöglicht werden. Vom Menschen verursachte Torturen sollen ihnen erspart bleiben. Deshalb ist es naheliegend, dass sich Tierschützer vor allem um Tiere bemühen, die sich in der Obhut des Menschen befinden. Besonders große Kritik wird in diesem Zusammenhang an der Haltung von Tieren geübt, die der menschlichen Ernährung dienen sollen, also der Massentierhaltung von Geflügel, Schweinen, Rindern. Aber auch das oft qualvolle Leben in Pelztierfarmen wird angeprangert. Die Forderung von Tierschützern, bei der Herstellung von Kleidungsstücken auf Tierpelze und -häute zu verzichten, hat etwas mit der tierquälerischen Haltungsweise von Pelztieren zu tun, aber auch mit dem grausamen Abschlachten junger Seehunde oder – und hier trifft sich der Tierschutz mit dem Artenschutz – mit der Gefährdung großer Pelztiere wie Ozelot, Jaguar oder Leopard. Tierschützer wie Artenschützer bemühen sich, dass die Jagd auf Elefanten des Elfenbeins wegen unterbunden wird, ebenso die illegale Jagd auf Nashörner.

Die schrecklichen Haltungsbedingungen bei der Schweine- und Hähnchenmast, die abschreckende Praxis bei Tiertransporten und Schlachtungen, werden zum einen vom Tierschutz kritisiert, weil er das Tierwohl im Auge hat. Andererseits sind mit diesen Formen der industriellen Fleischproduktion auch nachteilige Einwirkungen auf die Umwelt verbunden. Dies betrifft zum Beispiel die Produktion von Treibhausgasen oder die Gefahren, die mit übermäßigem Medikamenteneinsatz, insbesondere von Antibiotika, verbunden sind. Der Import von Futtermitteln schädigt die Ökosysteme und die landwirtschaftlichen Produktionsbedingungen in den Herkunftsländern. Die großen Mengen an Tierexkrementen (Gülle) tragen nicht nur zur Eutrophierung von Gewässern sondern auch zu einem hohen Stickstoffgehalt terrestrischer Ökosysteme bei, was sich wieder negativ auf die Biodiversität auswirkt. In Kombination mit der Stickstoffoxidproduktion von Verbrennungsmotoren prägt Massentierhaltung über die Bildung von Ammoniumnitrat auch zur Feinstaub Problematik bei.

Ein wichtiger Antrieb für eine vegetarische oder vegane Ernährungsweise ist der Wunsch, dass für die Produktion von Nahrungsmitteln kein Tier sterben oder leiden soll. Aber auch die ökologischen Auswirkungen des hohen Fleischkonsums und damit der Umweltschutz und der Naturschutz werden immer häufiger als Gründe für eine vegetarische Lebensweise genannt.

Pflanzenschutz

Apfelplantagen werden besonders häufig mit Pestiziden gespritzt. Die Verdriftung ist dabei – wegen der hohen Lage der Spritzdüsen besonders groß. (Bodenseekreis bei Kluftern, 2.4.2012, Foto W. Probst)

Dieser Begriff sei hier erwähnt, er passt aber nicht in die Reihe der übrigen Schutzbegriffe. Denn man versteht darunter nicht den Schutz von Wildpflanzen, sondern „die Gesamtheit der Bemühungen, Schäden und Leistungsminderungen von Nutzpflanzen durch Ausnutzung aller einschlägigen wissenschaftlich Erkenntnisse in einer ökologisch und ökonomisch angemessenen Weise zu verhindern oder zu mildern“ (Heitefuß 2000). Es geht also in erster Linie um den von Natur- und Umweltschutz  oft heftig kritisierten Einsatz von Pestiziden gegen Krankheiten und Schädlinge von Nutzpflanzen.

Ziele und Wege

Ist das ein Blick in die Zukunft? Agrarlandschaft in Iowa,USA, Google Earth Aufnahme vom 26.7.2016

Auch wenn sich die verschiedenen Schutzziele deutlich unterscheiden und die einzelnen Schutzmaßnahmen sogar zum Teil widersprechen, so kann man doch eine gemeinsame Zielsetzung feststellen: Die vielen Einflüsse des Menschen auf natürliche Abläufe und Entwicklungen des Bioplaneten Erde sollen nicht dazu führen, dass sich die Lebensbedingungen drastisch verändern. Auch wenn solche drastischen Veränderungen – wie die Erdgeschichte zeigt – nicht das Ende des Bioplaneten bedeuten würde, so hätten sie doch für viele Ökosysteme und  insbesondere für die Menschen  katastrophale Folgen. Es wird deshalb angestrebt, die menschlichen Aktivitäten und die menschlichen Wirtschaftssysteme so zu gestalten, dass es keinen Verbrauch gibt, der nicht ersetzt werden kann. Im allgemeinen werden diese Ziele mit „Nachhaltigkeit“ oder „nachhaltiger Entwicklung“ bezeichnet.

Diese Zielsetzungen sind kaum umstritten. Umstritten sind allerdings die Wege, auf denen diese Ziele erreicht werden könnten. Zwar ist klar, dass es auf der Erde „Grenzen des Wachstums“ gibt, trotzdem gibt es unterschiedlice Auffassungen zum Thema Konsum:

  • Ist eine Konsumsteigerung grundsätzlich schädlich und muss mindestens für die westliche Welt gelten, dass nur eine strenge Konsumbeschränkung eine nachhaltige Entwicklung ermöglicht, oder
  • muss es nur darum gehen, den Konsum durch Kreislaufwirtschaft nachhaltig zu gestalten? (Ökoeffektivität erhöhen)

https://de.wikipedia.org/wiki/%C3%96koeffektivit%C3%A4t

Für eine sofortige Konsum-bzw. Wachstumsbeschränkung spricht, dass es keinen Stoffkreislauf ohne Verluste gibt und die Erdbevölkeung derzeit schon Ressourcen „über ihre Verhätnisse“ verbraucht. Andererseits sind Konsumbeschränkungen weltweit kein  realistisches Ziel angesichts der großen Armut, die weite Teile der Weltbevölkerung betrifft. Für eine stärkere Ausrichtung auf eine strikte Kreislaufwirtschaft spricht, dass der Energiefluss von der Sonne zur Erde noch eine deutliche Steigerung der Primärproduktion zulassen würde . Damit wäre ein weiteres Wachstum der Stoffumsätze möglich und dies wäre für eine friedliche Koexistenz aller Menschen förderlich. Allerdings wird auch eine konsequente Kreislaufwirtschaft nur dann Nachhaltigkeit ermöglichen, wenn es in gewissen Bereichen zu einem Konsumverzicht kommt. Dies gilt zum Beispiel für den Fleischkonsum in westlichen Industrieländern und für die Nutzung aller fossilen Ressourcen, nicht nur der Energieträger sondern auch anderer Rohstoffe.

Bei der Frage, ob es sinnvoller ist,  Natur zu schützen, indem man sie sich selber überlässt oder indem man sie sinnvoll „managet“, würde ich für eine differenzierte Vorgehensweise plädieren, wie sie Trommer schon 1994 vorgeschlagen hat:

  • Tu nichts-Leitbild für Gebiete, die den ursprünglichen Naturzustand repräsentieren, zum Beispiel Bannwälder, aber auch verwilderte Gärten, Ruinen, Brachflächen und allen Bereiche, wo „wachsen lassen“ nicht wichtigen Interessen entgegensteht
  • Pflege-Leitbild für Formen der traditionellen Kulturlandschaft mit dem Ziel, nachhaltige Bewirtschaftungs- und Pflegeformen für Weidelandschaften, Feuchtwiesen, Streuobstwiesen usw. zu finden
  • Tu was-Leitbild für urban-industrielle Räume. Hierher gehören zum Beispiel die Konzepte der „Green Cities“ (vgl. https://www.stefanoboeriarchitetti.net/en/portfolios/liuzhou-forest-city/ )

Green Cities (Grafik Probst 2012)

Quellen

Baur B (2010) Biodiversität. Bern: Haupt

Ellenberg, H. (1987): Fülle – Schwund – Schutz: Was will der Naturschutz eigentlich? Vehandlungen der Gesellschaft für Ökologie 16: 449-450

Heitefuß. R. (2000,3.A.): Pflanzenschutz. Grundlagen der praktischen Phytomedizin. Stuttgart: Thieme

Hendersen, D. : American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/  (zuletzt aufgerufen am 5.9.2017)

Hobohm,C. (2000): Biodiversität. Wiebelsheim: Quelle und Meyer

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

Kirmer, A. et al. (2016): Erfolgreiche Anlage mehrjähriger Blühstreifen  auf produktiven Standorten  durch Ansaat wildkräuterreicher Samenmischungen und standortangepasste Pflege. Natur und Landschaft 91(3): 109-118

McDounough, W./Braungart, N. (2009): Cradle-to-cradle. New York: Vintage

Meyer-Abich KM (1990) Aufstand für die Natur. Von der Umwelt zur Mitwelt. Hanser, München

Piechocki, R. (2010): Landschaft – Heimat – Wildnis. Schutz der Natur – aber welcher und warum? München: Beck

Probst, W. (2017): Saumbiotope – Grenzen und Übergänge. Untericht Biologie 425: 2-11

Trommer, G. (1992): Wildnis – die pädagogische Herausforderung. Weinheim: Deutscher Studienverlag

Trommer, G. (1994): Didaktisch differenzierte Leitbilder – ein Drei-Umwelten-Modell zum pägagogischen Umgang mit Natur und Landschaft. Workshop Ökologische Leitbilder, Cottbus 9.6.1994. TUC Aktuelle Reihe 6/94:57-62

Wohlleben, P. (2013): Der Wald. Ein Nachruf. München: Ludwig

Wohlleben, P. (2017): Gebrauchsanweisung für den Wald. München/Berlin: Piper

http://www.nabu-selfkant.de/2011/12/plaggen-oder-schoppern-von-heideflachen/

Die vergoldete Schaukel

LINK-NAME

Balken eines Schaukelgestells mit Trentepohlia-Überzug

Balken eines Schaukelgestells mit Trentepohlia-Überzug

Mikroskopisches Bild von Trentepohlia umbrina aus dem gelborangen Belag des Schaukelpfostens

Mikroskopisches Bild von Trentepohlia umbrina aus dem gelborangen Belag des Schaukelpfostens

Vor sechseinhalb Jahren, im Sommer 2010, haben wir in unserem Garten in Oberteuringen für unsere Enkelkinder eine Schaukel aufgestellt. Bis heute wird sie sehr gerne genutzt und die Holzbalken des Gerüstes zeigen eigentlich noch keine Alterserscheinungen. Allerdings ist seit zwei Jahren zu beobachten, dass sich an den etwas beschatteten Pfostenteilen ein orange-gelblicher Überzug bildet und immer weiter ausdehnt. Dieser Überzug lässt sich leicht abschaben und im Mikroskop erkennt man, dass der Belag sich aus rundlichen Zellen zusammensetzt. Es handelt sich um die Luftalge Trentepohlia umbrina.

Trentepohlia cf. umbrina im Schlosspark von Donaueschingen, 29.1.2017

Trentepohlia cf. umbrina im Schlosspark von Donaueschingen, 29.1.2017

Düngung aus der Luft

Diese zu den Grünalgen gehörende Luftalge, deren Farbe von dunkelgelb bis rotbraun variieren kann, ist in den letzten Jahren – zusammen mit einigen anderen Arten der Gattung – häufig geworden. In verschiedenen Internetforen melden sich Gartenbesitzer, weil ihnen orangefarbene oder rotbraune Beläge der Borke von Obstbäumen Sorge machen. Für die Bäume hat dieser Bewuchs allerdings keine nachteiligen Folgen. Aber er ist – wie das massenhafte Auftreten der Gelbflechten (Xanthoria) – ein Zeichen dafür, dass Stickstoffverbindungen in der Luft in den letzten 10-15 Jahren immer häufiger geworden sind. Dazu gehören nicht nur gasförmige Verbindungen, wie Stickoxide und Ammoniak sondern auch Feinstaubpartikel (PM = particulate matter) aus Ammoniumnitrat. Für die Zunahme dieser Stoffe in unserer Atmosphäre sind neben der Landwirtschaft vor allem Verbrennungsmotoren von Kraftfahrzeugen verantwortlich – nach einer WHO-Untersuchung von 2003 zu 50 bis 75%. http://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf

Während bei den fossilen Brennstoffen Steinkohle, Braunkohle und Schweröl  erhebliche Mengen an Stickstoffverbindungen enthalten sind, die bei dem Verbrennungsvorgang freigesetzt werden – man spricht von Brennstoff NOx -, entstehen die Stickstoffoxide bei Diesel- und Benzinmotoren bei hohen Verbrennungstemperaturen aus N2 und O2 der Luft. Dieser Anteil wird thermisches NOx genannt..

Früher –  mit Höhepunkt in den 1970iger Jahren – schadete vor allem die Belastung mit Schwefelverbindungen (vor allem SO2) den Flechten, Moosen und Luftalgen, die ihre Nährmineralien ungefiltert direkt aus der Luft aufnehmen. Man sprach „Flechtenwüsten“ in den Städten und nutzte Flechten als Zeigerorganismen für Luftschadstoffe. Heute hat sich das Bild  gewandelt: Schwefelverbindungen spielen als Luftschadstoffe kaum noch eine Rolle, weil in die  Fabrikschlote entsprechende Filter eingebaut wurden. Dafür haben Stickstoffverbindungen sehr stark zugenommen. Diese Stickstoffbelastung ist nicht nur die Ursache einer flächendeckenden Eutrophierung, die sich nachteilig auf die pflanzliche Biodiversität auswirkt, Stickoxide reizen und schädigen auch die Atmungsorgane. Im Sommersmog sind sie verantwortlich für die Ozonbildung. Außerdem ist insbesondere das Lachgas N2O ein hochwirksames Treibhausgas, das zudem die Ozonschicht der Stratosphäre angreift.

Für eine Reihe von Flechten- , Moos- und Luftalgenarten allerdings, die diese Verbindungen über ihre Oberfläche direkt aus der Luft aufnehmen können, bedeutet diese erhöhte  Konzentration von Stickstoffverbindungen in der Luft eine zusätzliche Düngung.

Xanthoria parietina am Syrischen Hibuskus

Xanthoria parietina am Syrischen Hibuskus

Die Häufigkeit der Gelbflechte (Xanthoria spp., v.a. X. parientina) an Baumstämmen, Ästen und Zweigen hat flächendeckend enorm zugenommen. Fast in jedem Garten findet man die Flechte an Ästen und Stämmen von Sträuchern und Hecken. Auch die Helm-Schwielenflechte (Physcia adscendens) ist an vielen Bäumen und Sträuchern sehr häufig geworden. Ebenso profitieren bestimmte Mauermoose, z. B. das Kissenmoos (Grimmia pulvinata), von der Luftdüngung.

Mauer mit Kissenmoos Grimmia pulvinata

Mauer mit Kissenmoos Grimmia pulvinata

Kissenmoos Grimmia pulvinata

Kissenmoos Grimmia pulvinata (alle Fotos W. Probst)

)

Feinstaub aus Ammoniak

Wie man von typischen Xanthoria-Standorten – wie Misthaufeneinfassungen und Vogelfelsen – weiß, wird die Flechte nicht nur von Stickoxiden sondern vor allem auch durch Ammoniak bzw. Ammonium begünstigt. Nun konnte einmal nachgewiesen werden, das aus Katalysatoren von Benzinmotoren Ammoniak freigesetzt wird (Frahm 2008). Zum Anderen dürfte auch die Ammoniakfreisetzung von Dieselmotoren mit SCR-Katalysatoren (Selektive katalytische Reduktion) eine Rolle spielen. Die strengeren Richtlinien Stickstoffoxidabgabe durch Dieselmotoren haben bewirkt, das die Hersteller diese SCR-Katalysatoren entwickelten, bei denen durch Ammoniakzugabe in den Abgasstrom die Stickoxide zu N2 reduziert werden sollen. Die Ammoniakzugabe erfolgt über wässrige, 32,5-prozentige Harnstofflösung (Firmenbezeichnung „AdBlue“), die in einem Extratank mitgeführt wird. Sie wird dosiert in den Abgasstrom eingespritzt. Im titanbeschichteten Katalysator reduziert der Ammoniak ab einer Abgastemperatur von 170°C Stickstoffoxide zu Stickstoff (N2) und Wasser, außerdem entsteht als Oxidationsprodukt des Harnstoffs Kohlenstoffdioxid. Dabei müssen auf 100 l Dieselkraftstoff etwa 5 l AdBlue zugesetzt werden.

Man kann davon ausgehen, dass bei diesem Verfahren beträchtliche Restmengen an  NH3, eventuell auch Lachgas (N2O), freigesetzt werden, die nicht zur Reduktion von Stickoxiden zu N2 genutzt wurden. Zusammen mit Wasserdampf und Ozon kann sich aus diesem Ammoniak ammoniumhaltiger Feinstaub (NH4NO3 und  – in Gegenwart von SO2 – auch (NH4)2SO4) bilden. Ammoniumnitrat ist fest und schmilzt erst bei 169,6°C. Es bilden sich kleinste Partikel, die als sogenannter „sekundärer Feinstaub“ bezeichnet werden. Dieser NH3-Ausstoß von LKW- und PKW-Motoren erfolgt zu großen Teilen an den Autobahnen und damit in Deutschland auch in vielen Bereichen der freien Landschaft.

NO  +  O3  →  NO2  +  O2

2NO2  +  H2O  →  HNO3  + HNO2

HNO3  + NH3  →  NH4 NO3

Die wichtigste Ammoniakquelle ist die Landwirtschaft. Nach Angaben des Umwelt-Bundesamts stammen um die 95% der Emissionen insbesondere aus der Tierhaltung und werden vor allem über die Gülledüngung freigesetzt. (http://www.umweltbundesamt.de/daten/luftbelastung/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen). Auch wenn ammoniakhaltige Gase aus der intensiven Landwirtschaft mit Stickoxiden aus Verbrennungsmotoren zusammentreffen, bildet sich Ammoniumnitrat.

Ammoniumnitrat ist Hauptbestandteil vieler Mineraldünger. Neben dem Düngereffekt geht von dem Salz aber auch eine osmotische Wirkung aus, die dazu führt, dass nur salzresistente  bzw. austrocknungsresistente Algen, Flechten und Moose von dieser Düngung aus der Luft nicht geschädigt werden (Frahm 2008).

Gesundheitsschäden

Für uns Menschen sind diese Verbindungen, insbesondere NO2, Reizgase für die Atmungsorgane. Zudem ist bodennahes NO2 verantwortlich für die sommerliche Ozonbildung:

Sonnenlicht

NO2  +  O2  →  NO  +  O3

Bei fehlender Lichtenergie ist diese Reaktion reversibel:

NO  +  O3  →  NO2  +  O2

Deshalb gehen die Ozonwerte in Städten nachts wieder zurück. Vertriftetes NO fern von Emissionszentren wird durch den Luftsauerstoff  zu NO2 oxidiert und wirkt dann weiter Ozon bildend. Als Folge sind die Ozonwerte oft außerhalb der Städte noch höher.

N2O (Lachgas), das z. B. beim SCN-Verfahren entsteht, ist ein sehr stark wirkendes Treibhausgas, das nach einem Report des IPCC (Intergovernmental Panel on Climate Change) die 300fache Treibhausgaswirkung von CO2 haben soll. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-ts.pdf. Außerdem wird es durch UV-Licht in NO umgewandelt und führt dann in höheren Atmosphäreschichten zum nächtlichen O3-Abbau.

Zur gesundheitsschädlichen Wirkung von Feinstaub schreibt das Bundesumweltministerium: „PM10 kann beim Menschen in die Nasenhöhle, PM2,5 bis in die Bronchien und Lungenbläschen und ultrafeine Partikel bis in das Lungengewebe und sogar in den Blutkreislauf eindringen. Je nach Größe und  Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen in der Luftröhre und den Bronchien oder den Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (Herzfrequenzvariabilität). PM10 kann beim Menschen in die Nasenhöhle, PM2,5 bis in die Bronchien und Lungenbläschen und ultrafeine Partikel bis in das Lungengewebe und sogar in den Blutkreislauf eindringen. Je nach Größe und  Eindringtiefe der Teilchen sind die  bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (Herzfrequenzvariabilität).“ http://www.umweltbundesamt.de/themen/luft/luftschadstoffe/feinstaub

Dabei bezieht sich PM2,5 bzw. PM10 auf die Größe der Partikel von durchschnittlich 2,5 bzw. 10 μm.

Moose und Flechten gegen Feinstaub

Die vergoldeten Schaukelpfosten, das von Gelbflechten überzogene Gartengesträuch und die Kissenmoospelzchen auf der Gartenmauer sind also Zeiger für düngende Stickstoffverbindungen in der Luft. Diese Luftinhaltsstoffe sind gesundheitsschädlich. Die Wachstumsförderung von Algen, Flechten und Moosen könnte aber auch eine Möglichkeit für die Verminderung der Feinstaubelastung aufzeigen. Insbesondere Moose scheinen dafür besonders geeignet. Mit ihrer großen Oberfläche, die zudem etwas negativ aufgeladen ist, werden Ammonium haltige Feinstaubpartikel und Ammoniumionen (NH4+) aufgefangen. Über die Blättchen werden diese Stickstoffverbindungen vom Moos aufgenommen und verstoffwechselt. Im Labor wurden diese Zusammenhänge von Frahm und Mitarbeitern an der Universität Bonn gründlich erforscht

(http://www.iug-umwelt-gesundheit.de/pdf/0801_13_6_SP_Moos.pdf)

In der baden-württembergischen Landeshauptstadt Stuttgart hat man besonders mit Feinstaub zu kämpfen. An dem Feinstaub-Hotspot der Stadt, dem „Neckartor“ wurde im November 2016 mit dem Errichten der ersten Mooswand gegen Feinstaub begonnen. Bis Ende März 2017 soll sie auf einer Länge von 100m stehen. Mit dieser Einrichtung soll nicht nur die allgemeine Wirkung getestet werden, man möchte auch herausfinden, welche Moosarten besonders geeignet sind.

http://www.stuttgarter-zeitung.de/inhalt.mit-moss-gegen-den-feinstaub-erste-testwand-in-stuttgart-steht.25a11043-4f6e-4a27-8844-2f4ff14725ee.html

 

Jeder Gartenbesitzer hat die Möglichkeit, in seinem Garten etwas gegen Stickoxide, Ammoniak und Feinstaub zu unternehmen, indem er Moose, Fechten und Algen nicht bekämpft sondern fördert. Ein vermooster Rasen ist kein Anlass zur Sorge, im Gegenteil., er kann der Grundstein für einen ganz besonderen Gartenabschnitt, einen „Moosgarten“ sein. Ein sehr guter Ratgeber für die Anlage von Moosgärten ist das Büchlein von dem leider 2014 verstorbenen Bryologen und Ökologen Jan-Peter Frahm.

Kranzmoos-Rasen (Rhytidiadelphus squarrosus), ist immer grün und muss nicht gemäht werden

Kranzmoos-Rasen (Rhytidiadelphus squarrosus), ist immer grün und muss nicht gemäht werden

Weitere Quellen

Barnekow, D. (2011): Gelbes Geäst. Unterricht Biologie 364, S. 39-43

Ellenberg, H. (1987): Fülle – Schwund -Schutz: Was will der Naturschutz eigentlich? Verh. d. Ges. f. Ökologie XVI, Göttingen, S.449-460

Frahm, J.-P. (2008): Nitrophile Flechten und Moose nehmen zu – Überdüngung und Versalzung durch Katalysatoren? Biuz 2/2008 (38): S.94-101

Frahm, J.-P. (3.A. 2011): Mit Moosen begrünen – Gärten, Dächer, Mauern, Terrarien, Aquarien, Straßenränder – eine Anleitung zur Kultur. Jena: Weißdorn-Verlag

Gams, H. (1969): Makroskopische Süßwasser- und Luftalgen. Kleine Kryptogamenflora Bd. Ia, Stuttgart: G.Fischer

Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: relevante Luftschadstoffe. http://www4.lubw.baden-wuerttemberg.de/servlet/is/20243/

Schenk, G. (1997): Moss gardening including Lichens, Liverworts and other miniatures. Portland (Oregon): Timber Press

Wachsen lassen – Naturschutz an Rändern, Säumen und Kanten

LINK-NAME

„Grün ist in unseren zivilisierten Städten nicht mehr die normale Farbe der Erdeoberfläche, die nicht nur nichts kostet, sondern sogar das einzig produktive Element aller biologischen Systeme ist – Grün ist hier vielmehr ein teures Produkt…. . Zur Zeit kostet die Planung und Ausführung einer nicht aufwändigen Grünanlage 10 bis 20 DM pro Quadratmeter und die Unterhaltung 10 % dieser Erstinvestition in jedem folgenden Jahr. Der Warencharakter der Natur hat hier ihre ökologische Qualität ausgeschaltet…“ (Peter Kramer 1977)

Lasst es wachsen!

Unsere Kulturlandschaft besteht durchgehend aus verplanten Flächen: Äcker, Wiesen, Weiden, Wälder, Wege, Gärten, Parks, Sportplätze, Wohnhäuser , Industrieanlagen, Bahnlinien und nicht zuletzt Straßen und Parkplätze. Äcker werden gedüngt, gespritzt und umgepflügt, Wiesen werden gemäht und mit Jauche vollgeschüttet, Weiden werden abgefressen, Wälder bewirtschaftet, Wege, Gärten und Parks gepflegt, das heißt der Rasen wird wöchentlich gemäht, die Hecken werden wenigstens zweimal im Jahr geschnitten, Unkraut wird gejätet und oft auch weggespritzt, Beete werden im monatlichen Turnus neu bepflanzt ….

Die Bearbeitung dieser Kulturflächen ist in vielen Fällen notwendig. Wenn man eine Wiese nie mehr mäht, wird daraus in ein, zwei Jahrzehnen ein Gebüsch und in einem Jahrhundert ein Hochwald. Einen Acker muss man regelmäßig bestellen, abernten, düngen und auch spritzen, um ernten zu können.  Aber wie sieht es mit den Rändern und den Grenzen zwischen den verschiedenen Nutzungsflächen aus? Ich meine, hier besteht für den Naturschutz ein riesiges Potenzial, das für den Naturhaushalt vermutlich ergiebiger ist, als die in ihrem Flächenanteil sehr beschränkten Naturschutzgebiete. Außerdem hilft der Randschutz, verinselte naturnahe Flächen zu vernetzen. Eine vielversprechende Initiative, welche diese Idee verfolgt, ist das „Konzept der Ehda-Flächen“. Initiator und Träger dieses Projektes ist das Institut für Agrarökologie des Landes Rheinland-Platz (IfA).

Wegrand bei Oberteuringen, 16.7.2016 (Foto Probst)

Wegrand bei Oberteuringen, 16.7.2016 (Foto Probst)

Wenn man eine Hecke nicht schneidet, wird man mit der Zeit den Weg daneben nicht mehr benutzen können. Aber wenn man den Wegrand nicht vor September  mäht, haben dort viele Kräuter und Gräser die Möglichkeit zu blühen und zu fruchten, Bienen, Hummeln, Schwebfliegen, Schmetterlinge und Käfer können sich monatelang am Nektar bedienen, Raupen, Blattwanzen, Zikaden, und Heuschrecken finden Futter und Spinnen können ihre Netze  bauen. An Zäunen muss das Unkraut nicht mit Glyphosat weggespritzt werden, Gräser und Kräuter sind meistens wesentlich schöner anzusehen als kahle Zäune. Auch Mauern werden durch hohe Kräuter an der Mauerbasis und Bewuchs der Mauerritzen schöner, die meisten Wege werden durch hochgewachsene Wegrandpflanzen nicht unbrauchbar sondern geschmückt. Die Ränder von Bürgersteigen müssen nicht wöchentlich vom Krautbewuchs befreit werden, der Bewuchs von Pflasterritzen belohnt bei zeitweiliger Duldung durch schöne Blüten. Ein großes zum Teil auch schon genutztes Potenzial ist der Wildwuchs an Gewässerrändern und Waldrändern.

Gehsteigkante mit Acker-Winde, Oberteuringen, 27.7.2016 (Foto Probst)

Gehsteigkante mit Acker-Winde, Oberteuringen, 27.7.2016 (Foto Probst)

Zwischen Radweg und Straße, Waltenweiler, 27.6.2016 (Foto Probst)

Zwischen Radweg und Straße, Waltenweiler, 27.6.2016 (Foto Probst)

Vor allem in Siedlungen und Industriegebieten gibt es immer wieder Flächen, die vorübergehend nicht genutzt werden. Solche Brachen sollte man so lange wie möglich sich selbst überlassen – wachsen lassen.

Natur ausschalten – Natur einschalten

Der niederländische Archtekt und Städteplaner Louis Guillaume le Roy (1924 – 2012) plädierte in seinem 1973 erschienenen und damals viel diskutierten Buch „Natur ausschalten – Natur Einschalten“ für eine vehemente Umkehr unsere Einstellung zu Gärten und Grünanlagen. In seiner Heimatstadt Heerenveen konnte er seine Ideen verwirklichen. Statt aufwändiger Grünanlagen schuf er hier abwechslungsreiche Brachflächen mit unterschiedlichen Materialien, insbesondere Bauschutt, und ließ es wachsen. Es entstanden bemerkenswerte vielfältige Biotope mit einem ganz besonderen ästhetischen Reiz.

Die Grundidee le Roys: Natürliche Systeme sind,  wenn man sie sich selber überlässt, erstaunlich stabil, da sie über sehr komplexe Regulationssysteme verfügen. Erst wenn man „Natur ausschaltet“ werden immer aufwändigere Pflegemaßnahmen nötig. Für die Gestaltung von Gärten und Grünanlagen aber auch für alle anderen anthropogen überformten Landschaften sollte deshalb das Prinzip der Eingriffsminimierung gelten. Eingriffe und Pflegemaßnahmen sollten nur insoweit durchgeführt werden, als dafür eine funktionale Notwendigkeit besteht.

Für die Entfernung von Krautwuchs an Zäunen zum Beispiel gibt es eindeutig keine solche funktionelle Notwendigkeit. Aber auch bei der Gestaltung von Wegrändern, Straßenrändern, Grünstreifen zwischen Radweg und Straße, Mauerbewuchs, Bewuchs von Gehsteigskanten, Plattenfugen und Grabenrändern könnte man in vielen Fällen le Roy’s Prinzip des Wachsenlassens großen Raum geben.

In dem dieses Jahr auch in deutscher Sprache erschienenen Buch von Dave Goulson, dem britischen Hummelforscher und Naturschützer „Die seltensten Bienen der Welt.: Ein Reisebericht“ findet sich im Epilog – per internet zugänglich – ein sehr lesenswertes Plädoyer für das Wachsenlassen.

https://www.amazon.de/Die-seltensten-Bienen-Welt-Reisebericht/dp/3446255036#reader_3446255036

Ein fascinierendes Projekt ist das Knepp Castle Estate Rewilding, das in einem sehenswerten Video dokumentiert wird: https://www.youtube.com/watch?v=mP3-TsRRSys

Saumbiotope – Grenzen und Übergänge (zu UB 425)

Immer häufiger sieht man an Straßenrändern, auf Verkehrsinseln oder an Ackerrandstreifen bunte Blumen blühen. Das sind nicht nur Klatsch-Mohn und Kornblume, Schafgarbe, Wilde Möhre und Wegwarte sondern auch Sommermalve (Malope trifida), Großblütiger Lein (Linum grandiflorum), Büschelschön (Phacelia tanacetifolia), Vogelfuß-Mädchenauge (Coreopsis palmata), Doldige Schleifenblume (Iberis umbellata) und andere Exoten, vorwiegend aus etwas wärmeren Regionen Europas und Amerikas. Für „Blühstreifen“ an Äckern gibt es für Landwirte sogar Fördermittel. Mittlerweile bieten Saatgutfirmen bereits ein differenziertes Angebot an Samenmischungen an. Sind es nur ästhetische Gesichtspunkte, die zu diesen „Blumenstreifen“ Anlass geben? Stehen dahinter auch ökologische Überlegungen und Ziele? Diese blühenden Wegränder sehen zweifellos schön aus, sie werden auch von blütenbesuchenden Insekten gerne angenommen. Ist es sinnvoll, dafür vor allem nicht einheimische Arten zu nutzen?

Diese Fragen führen zu der übergeordneten Frage, welche besonderen Merkmale solche Übergänge und Grenzen zwischen verschiedenen Landschaftselementen kennzeichnen. Was zeichnet Saumbiotope aus?

Das Unterricht Biologie Heft 425 „Saumbiotope – Grenzen und Übergänge“ ist im Juli 2017 erschienen

Grenzen und Übergänge

Räumlich begrenzte Lebensgemeinschaften, deren Organismen untereinander besonders zahlreiche Wechselbeziehungen zeigen, bezeichnet man zusammen mit ihrer unbelebten Umwelt als Ökosystem. Ein solches System kann ein begrenzter Waldbestand, ein kleines Moor, ein Dorfteich oder eine Felskuppe sein. Aber auch viel größere Einheiten, etwa ein großer See oder Meeresteil oder ein riesiges Waldgebiet wie das Amazonasbecken kann man als Ökosystem auffassen.
Bei naturnahen Landschaften sind die Grenzen zwischen verschiedenen Ökosystemen oft keine scharf gezogenen Linien, vielmehr sind es allmähliche Übergänge. Dies gilt für großräumige Übergänge, etwa vom tropischen Regenwald zur Savanne oder von der Taiga in die Tundra. Diese Übergangsbereiche werden auch als Ökotone bezeichnet.

Vegetationszonierung im Vorderrheintal bei Sedrun

Vegetationszonierung im Vorderrheintal bei Sedrun (Foto Probst)

Es gilt aber auch für kleinere Gebiete, zum Beispiel für die Baumgrenze an einem Gebirgsmassiv.

Scharfe Grenzen hängen oft mit menschlichen Aktivitäten zusammen: Waldränder, Feldraine und Straßenränder sind dafür typische Beispiele. Aber auch katastrophenartige Naturereignisse wie Waldbrände, Sturmschäden, Lawinen, Vulkanausbrüche oder Überschwemmungen haben die Ausbildung scharfer Grenzen zur Folge, die allerdings meist im Laufe der Zeit wieder ausgeglichen werden.
Auch steile Umweltgradienten, zum Beispiel die Wassertiefe an einem Gewässerufer oder die Meereshöhe in einem Gebirge, können zu deutlich erkennbaren Zonierungen führen, bei denen die einzelnen Pflanzengemeinschaften scharf gegeneinander abgegrenzt sind.

Der besondere Reiz solcher Grenzen besteht darin, dass es hier zu einer Vermischung von zwei verschiedenen Lebensgemeinschaften kommt. Solche „Säume“ oder „Ökotone“ bieten besonders viele ökologische Nischen und sind deshalb oft besonders artenreich. Sie erfüllen wichtige ökologische Funktionen, zum Beispiel als Brutplatz für Vögel, Wanderwege für Reptilien und Amphibien, Überwinterungsquartiere für Wirbellose oder Nahrungsspender für Blüten besuchende Insekten.

Saumbiotope in der mitteleuropäischen Kulturlandschaft

Mitteleuropäische Kulturlandschaft (Baden-Württemberg)

Mitteleuropäische Kulturlandschaft (Baden-Württemberg; Foto Probst)

Saumbiotope sind wesentliche Elemente der traditionellen Kulturlandschaft. Sie sind mit der Entwicklung des Ackerbaus seit dem Neolithikum und der Bronzezeit unter dem Einfluss des Menschen entstanden. In Mitteleuropa haben sich diese kleinräumigen Strukturen mit der Auflockerung und Zurückdrängung der ursprünglichen Urwälder in den vergangenen 6000 Jahren allmählich entwickelt. Dadurch hat sich die Anzahl der Pflanzen- und Tierarten, die Biodiversität, stark erhöht. Schaut man sich die Verteilung der Tier- und Pflanzenarten in einer kleinräumig strukturierten, von Wallhecken, Wegrändern, kleinen Gehölzen und Wasserläufen geprägten Landschaft an, so sind die flächigen Landschafselemente relativ artenarm, die meisten Arten konzentrieren sich in den Saumbiotopen. Viele Arten aus den bewirtschafteten Arealen haben

Hochgewachsener Straßenrand mit Glatthafer und Margeriten

Hochgewachsener Straßenrandstreifen mit Glatthafer und Margeriten (Foto Probst)

in den Saumbiotopen eine Rückzugsmöglichkeit gefunden. Dabei kam es im Laufe der Jahrhundrte auch zu Einnischungsprozessen, die Arten haben sich in Anpassung an die besonderen Bedingungen der Saumbiotope  etwas verändert. Auch für eine Reihe neu eingewanderter Arten bieten Saumbiotope günstige Bedingungen.

Eine besondere Bedeutung kommt Saumbiotopen für die Vernetzung von Ökosystemen zu. In einer wenig strukturierten Agrarlandschaft kann die ökologische Qualität durch Ökotone wesentlich verbessert werden. Ein besonderes Problem riesiger Felder in einer ausgeräumten Landschaft ist die Bodenerosion. In Mecklenburg-Vorpommern, einen Bundesland mit besonders vielen großflächigen Äckern, gelten mehr als die Hälfte der Böden als erosionsgefährdet, in ganz Deutschland immerhin 14% (Umweltbundesamt). Das ist ein Grund dafür, dass der Naturschutz ein besonderes Augenmerk auf die Ökotondichte einer Landschaft legt.

Schutz und Pflege von Saumbiotopen

Durch Beweidung stark degradierter Knick, Ausacker b.Flensburg, 1984 (Foto Probst)

Durch Beweidung stark degradierter Knick, Ausacker bei Flensburg, 1984 (Foto Probst)

Allerdings sind Grenzen in einer Kulturlandschaft nicht immer ein wertvoller Saumbiotop. Wallhecken wachsen zu weniger nischenreichen Baumreihen aus, wenn sie nicht regelmäßig „auf den Stock gesetzt“ werden. Dabei sollte man allerdings darauf achten, dass die zurückgeschnittenen Strecken nicht zu lang sind, damit sich für die Arten Rückzugsmöglichkeiten eröffnen. Durch Beweidung können die Wälle erodieren und die Krautvegetation vernichtet werden, durch Pestizideinsatz auf dem angrenzenden Acker können Tiere und Pflanzen geschädigt werden.

Herbicideinsatz am Wegrand (Foto Probst)

Herbicideinsatz am Wegrand (Foto Probst)

Ähnliches gilt für Wegränder und Straßenränder. Frühzeitiges und häufiges Mähen mindert ihren Wert. Erst wenn die Pflanzen blühen, können sie Blütenbestäuber ernähren und erst wenn sie reife Früchte ausbilden können sie sich selbt vermehren und auch als Futterpflanzen für Vögel und andere Tiere zur Verfügung stehen. Auch noch im Winter bieten Fruchtstände („Wintersteher“) Futter und Unterschlupf- und Überwinterungsmöglichkeiten für Insekten.

Waldränder sind umso artenreicher, je dichter der Gebüschsaum und der Hochstaudenbestand ausgebildet sind.Allerdings wird sich von einem Waldrand ausgehend in einem Waldklima der Wald allmählich ausdehnen, wenn man der Natur ihren Lauf lässt. Durch Wurzelausläufer und Keimlinge vordringende Gehölzpflanzen wird der Landwirt deshalb abmähen  und umpflügen müssen. Mäht man allerdings mit dem Schlegelmäher hart an der Waldgrenze entlang, führt dies schnell zu einer Auflockerung des dichten Gebüschstreifens, der dadurch viele seiner ökologischen Funktionen verliert.

Gewässerränder können je nach Uferprofil und Gewässertyp sehr unterschiedlich aussehen.Besonders stark wurden die Fließgewässer in der mitteleuropäischen Landschaft im Laufe der Jahrhunderte verändert. Um die landwirtschaftlich nutzbaren Flächer zu vergrößern wurden nicht nur die Übergangszonen, verschmälert, die Bäche selbst wurden begradigt, tiefer gelegt, und regelmäßig ausgeräumt und ihre Ufervegetation abgemäht. Die Renaturierung von Bachläufen ist deshalb heute ein wichtiger Bereich des Natur- und Umweltschutzes.

Die charakteristischen Saumbiotope an großen Wasserläufen, die Auwälder, sind fast vollständig aus unserem Landschaftsbild verschwunden. Dabei handelt es sich um ursprünglich besonders artenreiche für den Naturhaushalt einer Landschaft wichtige Biotope: “ In den Auen der Schweiz wurden bisher gegen 1200 Pflanzenarten erfasst, wobei die tatsächliche Zahl wahrscheinlich 1500 Arten übersteigt. Dies entspräche der Hälfte der Schweizer Flora auf einem halben Prozent der Landesfläche. Wie die botanische ist auch die zoologische Vielfalt gross: Schmetterlinge, Libellen, Heuschrecken nutzen die verschiedenen Auenbiotope im Lauf ihres Lebenszyklus; Amphibien und Fische, zahlreiche Vogel- und Säugetierarten finden hier Nahrung und Unterschlupf.“ http://www.waldwissen.net/wald/naturschutz/gewaesser/wsl_auen_schweiz/index_DE?dossierurl=http://www.waldwissen.net/dossiers/wsl_dossier_auen/index_DE

Auch an stehenden Gewässern kommt dem Schutz der Gewässerrandstreifen eine besondere Bedeutung zu und auch hier sind natürliche Verhältnisse nur noch an sehr wenigen Stellen zu finden.

Gewässerränder sollten durch Schutzstreifen vor Einträgen aus der Landwirtschaft (Dünger, Pestizide) aber auch vor menschlichem Zutritt geschützt werden.

Auch Meeresküsten zeigen eine charakteristische Zonierung, die allerdings je nach Küstenform sehr unterschiedlich aussehen kann. Bei den an der deutschen Nordseeküste so charakteristischen Wattflächen handelt es sich um flächenhafte Ökosysteme, die nicht  als Saumbiotope im eigentlich Sinne bezeichnet werden können.

Halophytenflur auf Baltrum, 1982 (Foto Probst)

Halophytenflur auf Baltrum, 1982 (Foto Probst)

Dünen und Salzwiesen zeigen schon eher die Charaktristika von Saumbiotopen, in denen sich Elemente der angrenzenden Lebensräume mit den typischen Vertretern mischen. Sehr enge Säume bilden sich an Felsküsten, die  in Deutschland allerdings weitgehend auf die Insel Helgeland begrenzt sind. Sie sind aber charkteristisch für mediterrane Küsten.

Natüriche Küstensäume sind durch anthropogene Einflüsse vielfach verändert worden. Ein Rolle spielen künstliche Befestigungen und Schutzanlagen (Deiche, Grabensysteme und Befestigungen zur Landgewinnung), Verbauungen, Hafenanlgen usw. . Hinzu kommen Einleitungen von Abwässern sowie Düngemitteln und Pestiziden. Tropische Mangroveküsten sind insbesondere durch Aquakulturen, vor allem Garnelenfarmen, bedroht.

Fragmentierung

Oft sind Saumbiotope besonders artenreich, da in ihnen die Arten beider angrenzender Biotope zu finden sind. Es wäre allerdings die falsche Schlussfolgerung, wenn man daraus ableiten würde, dass eine Zerstückelung großer Lebensräume grundsätzlich die Biodiversität erhöhen würde. Im Gegenteil, die Habitatfragmentierung, also die Aufspaltung der Lebensräume von Tier- und Pflanzenarten, wird als eine wichtige Ursache für die Verminderung der Biodiversität angesehen. Lebensraumzerschneidungen, der Aufbau von Barrieren und Grenzen zwischen verschiedenen Teilen einer Population, schränkt den genetischen Austausch ein und kann letzlich zum Aussterben von Arten führen, wenn die Teilpopulationen eine bestimmte Größe unterschreiten.  Um diese nachteiligen Effekte zu vermeiden, ist es wichtig, dass Korridore erhalten bleiben, durch die eine Verbindung der Teillebensräume bestehen bleibt. Der Zerschneidungseffekt von Verkehrswegen kann zum Beispiel durch grüne Brücken über Autobahnen oder durch Krötentunnel unter Landstraßen ein bisschen gemindert werden.

Besonders gefährlich ist die Fragmentierung für artenreiche, großflächige Ökosysteme, die eine lange Evolution hinter sich haben, wie zum Beispiel das Amazonasbecken. Rodungen und der Bau von Verkehrswegen haben hier zu vielen neuen Waldgrenzen geführt. Die Veränderungen durch eine solche Grenze wirken sich oft 100m in das Innere des Ökosystems aus. Das veränderte Mikroklima begünstigt die Einwanderung von neuen, auch invasiven Arten, dichterer Unterwuchs kann das Übergreifen von Feuern von angrenzenden Wirtschaftsflächen fördern. Dadurch verändert sich das Artengefüge, je kleiner die neuen Teillebensräume, desto größer ist der Verlust an Biodiversität.

Saumbiotope im Biologieunterricht

Saumbiotope haben oft etwas mit menschlichen Aktivitäten zu tun. Damit können Menschen aber auch Einfluss nehmen auf die  Qualität solcher Übergänge. Dabei bietet es sich besonders an, Beispiele aus dem direkten Umfeld der SchülerInnen, aus der eigenen Gemeinde, in den Mittelpunkt des Unterrichts zu stellen. In ländlichen Gemeinden können sich SchülerInnen  zum Beispiel über Aussehen und Pflege von Ackerrandstreifen informieren und eigene Vorstellungen mit betroffenen Landwirten diskutieren. In Städten können Parkpflegekonzepte und die Pflege von Weg- und Straßenrändern thematisiert und wenn möglich mit Anwohnern und Mitarbeitern des Umwelt- und Grünamtes besprochen werden. Dabei können  ökologische Grundkenntnisse über Artenschutz und Biodiversität, Verinselung und Vernetzung, Einnischung und Konkurrenz, Eutrophierung und Anreicherung von Schadstoffen in der Nahrungskette vermittelt werden. Es zeigt sich aber auch, dass wirtschaftliche Interessen, Fragen der Verkehrssicherheit und ästhetische Vorstellungen und Bdürfnisse der Bevölkerung berücksichtigt werden müssen. Auf dieser Basis kann es gelingen,  die Folgen von Pflegemaßnahmen und Eingriffen zu verstehen und dieses Verständnis zu nutzen, um sich in der Gemeinde aktiv für sinnvolle Naturschutzmaßnahmen einzusetzen.

Mögliche Themen

Vielfalt an Straßenrändern
Anzahl blühender Pflanzen in verschiedenen Saumbiotopen
Lebensraum Wallhecke (Knick)
Ackerrandstreifen
Bachufer
Seeufer (z. B. Kartierung eines Gewässerufers)

Uferkartierung mit Klebepunkten (Foto: Probst)

Uferkartierung mit Klebepunkten (Foto: Probst)

Meeresküste, Spülsaum
Leben am Waldrand (z. B. Tierspurensuche am Waldrand, Vegetationstransekt vom Wald auf die Wiese)
Transektmethode zur Aufnahme von Übergängen
Waldgrenze im Gebirge
Höhenzonierung
Luftbildauswertung zu Saumbiotopen in unterschiedlichen Landschaften
Verbesserung der Ökotondichte (Ausarbeitung von Vorschlägen für die eigene Gemeinde)
Biotopverbund

Literaturauswahl und URLs

Beck, E. (2015): Biodiversitätsforschung – wohin geht die Reise? Biol.Unserer Zeit 45(2), S. 98-105

Ellenberg, H./Leuschner, L. (6. A., 2010): Vegetation Mitteleuropas mit den Alpen Stuttgart: Ulmer (UTB)

Frey, ./Lösch, R. (3.A., 2010): Geobotanik. Pflanze und Vegetation in Raum und Zeit. Heidelberg: Spektrum

Heydemann, B./Hofmann, W./Irmler, U. (Hrsg, 1990): Verbundfunktion von Straßenrandökosystemen. Faunistisch-Ökol. Mitt., Suppl.9, Neumünster: K. Wachtholtz

Hobohm, C. (2000): Biodiversität. UTB 2162, Wiebelsheim: Quelle und Meyer

Kronberg, I. (Hrsgin.,1999): Saumbiotope. UB 245 (23.Jg.)

Kühne, S./Freier, B. (2012): Saumbiotope und ihre Bedeutung für Artenvielfalt und biologischen Pflanzenschutz. Workshop „Biological Diversity in Agricultural
Landscapes“ – February 09-10, 2012, Berlin-Dahlem
http://pub.jki.bund.de/index.php/JKA/article/view/2201/2585

Plachter, H. (1991): Naturschutz. Stuttgart: G.Fischer

Poschold, P. (2015): Geschichte der Kulturlandschaft. Stuttgart:Ulmer

Riedel, W./Lange, H. (Hrsg., 2. A., 2002): Landschaftsplanung. Heidelberg,Berlin: Spektrum

Schwarz, L. (2016): Als der Boden wegflog. TAZ vom 8.4.2016

Starkmann, T. (2017): Blühende Vielfalt am Wegesrand. Praxis-Leitfaden für artenriche Weg- und Feldränder. LANUV-Info 39 https://www.lanuv.nrw.de/fileadmin/lanuvpubl/1_infoblaetter/info39_Broschuere_Wegrain.pdf

Tschumi, M. et al.(2015): Wildflower strips enhance biological pest control and yield. In: Gesellschaft für Ökologie e. V. (Hrsg.): Verhandlungen der Gesellschaft für Ökologie. Band 45. S. 163ff, Marburg: Görich & Weiershäuser.

Walter, H. (1976): Die ökologischen Systeme der Kontinente (Biogeosphäre). Stuttgart, New York: G. Fischer

http://www.brodowin.de/naturschutz/saumbiotope/

http://www.karch.ch/karch/page-34517_de.html

http://www.landwirtschaftsamt.tg.ch/documents/2015_LQ-Merkblatt__205_Blumenstreifen_am_Ackerrand_Wegleitung_Projekthomepage.pdf

http://www.nachhaltigleben.ch/1-blog/3398-schaedlinge-bekaempfen-blumenstreifen-koennten-pestizide-ersetzen

https://umweltministerium.hessen.de/s/default/files/media/hmuelv/ackerrandstreifen.pdf

http://naturschutzbund.at/service/newsletter-leser/items/bedrohte-wunderwelt-am-wegesrand.html?file=tl_files/Inhaltsbilder/Service/newsletter/pdf/062_wegraender_anhang.pdf.

https://www.sielmann-stiftung.de/projekte/sielmanns-biotopverbunde/

http://www.naturschutzinformationen-nrw.de/vns/de/foerderkulissen/extens_ackernutzung/ackerrandstreifen

http://www.fva-bw.de/publikationen/merkblatt/mb_48.pdf

http://www.kn-online.de/News/Aktuelle-Nachrichten-Rendsburg/Nachrichten-aus-Rendsburg/Bluetenpracht-der-Saumbiotope-bietet-neuen-Lebensraum

http://www.waldwissen.net/wald/naturschutz/gewaesser/wsl_auen_schweiz/index_DE?dossier_rated=1#bew

http://www.baden-wuerttemberg.de/de/service/presse/pressemitteilung/pid/start-des-modellprojekts-strassenbegleitgruen-1/

http://ifa.agroscience.de/index.php/de/news-projekte/beispielprojekte/eh-da-flaechen/

Nostoc – der älteste Landbewohner

Auf der Erde vor 2,5 Milliarden Jahren - mit Blaugrünen Bakterien

Auf der Erde vor 2,5 Milliarden Jahren – mit Blaugrünen Bakterien (Fotos und Kombination W.Probst 2014)

Die Bakteriengattung Nostoc wurde von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) zur Mikrobe des Jahres 2014 gewählt.

http://mikrobe-des-jahres.de/content/nostoc/index.html

Vor zweieinhalb Milliarden Jahren

Ein ET landet vor zweieinhalb Milliarden Jahren auf der Erde. Es gibt keine Wälder und keine grünen Wiesen. Aber ganz ohne Bewuchs sind Berge und Täler nicht. Auf feuchten Sand- und Schotterflächen finden sich große Mengen von schwärzlichen Krusten. Wenn ein Regenguss diese Krusten aufweicht , quellen sie zu olivgrünem Glibber auf. Seine Messinstrumente zeigen dem Außerirdischen, dass es sich bei diesem Glibber um Lebewesen handelt. Sie gewinnen ihre Lebensenergie indirekt aus dem Sonnenlicht, indem sie Teile der Sonnenstrahlen (elektromagnetische Wellen) der Sonne nutzen, um das in der Atmosphäre reichlich vorhandene Kohlenstoffdioxid in energiereiche Kohlenhydrate zu verwandten. Die energiereichen Verbindungen, die beim Abbau dieser Kohlenhydrate in den kleinen in eine gallertige Substanz eingebetteten Zellketten dieser Lebewesen gebildet werden, dienen auch dazu, die Stickstoffmoleküle aus der Atmosphäre zum Aufbau von Aminosäuren und Proteinen zu assimilieren.

Stickstmoffassimilation und Kohlenstoffassimilation laufen parallel in verschiedenen Zellen ab. Dabei muss die Heterocystenzellwand für O2-Moleküle ziemlich dichtsein, denn die Nitrogenase ist extrem sauerstoffempindlich

Stickstmoffassimilation und Kohlenstoffassimilation laufen parallel in verschiedenen Zellen ab. Dabei muss die Heterocystenzellwand für O2-Moleküle ziemlich dicht sein, denn die Nitrogenase ist extrem sauerstoffempindlich.

Der olivfarbene Glibber ist „photolithoautotroph“:
autotroph = nicht auf organische Betriebsstoffe angewiesen
photo- = Licht dient als Energiequelle
litho- = Kohlenstoff stammt aus anorganischen Material

Die ersten Landlebewesen

Im Allgemeinen wird angenommen, dass die ersten Lebewesen, die vom Wasser- zum Landleben übergegangen sind, aus Grünalgen entstandene moosähnliche Pflanzen waren, und dass ihr Landgang vor etwa 450 Millionen Jahren begonnen hat. Man kann aber durchaus davon ausgehen, dass auch schon kernlose Lebewesen, also Bakterien und Archäen, Lebensformen entwickelten, die an das Landleben angepasst waren, wie sie dies heute noch sind. Ob dies – wie in der Einleitung angenommen – schon vor zweieinhalb Milliarden Jahren möglich war, oder wegen der zunächst noch sehr hohen UV-Strahlung erst deutlich später, ist nicht sicher.

Ein solches ursprüngliches Landlebewesen ist das Blaugrüne Bakterium Nostoc commune , dessen bis zu Handteller große Kolonien man auf offenen, mageren Böden auch heute noch finden kann.

Kolonie von Nostoc commune

Kolonie von Nostoc communem (feucht)

Kolonie von Nosatoc commune (ausgetrocknet)

Kolonie von Nostoc commune (ausgetrocknet)

Bei feuchtem Wetter bilden sie unregelmäßige, schleimige Klumpen, bei Trockenheit papierdünne schwärzliche Krusten. Es handelt sich also um ausgesprochen wechselfeuchte (poikylohydre) Lebewesen, die vollständige Austrocknung sehr gut ertragen und lange überdauern können (Anhydrobionten). Sie produzieren eine dicke äußere Hülle aus quellfähigen Polysacchariden (Mehrfachzuckern), die bei Feuchtigkeit ein glibbriges Substrat abgeben, in welchem die Zellketten dann auf dem Land unter wasserähnlichen Bedingungen leben können. Nostoc punctiforme ist ein terrestrisches Bakterium dass man frei lebend im Boden sowie in Symbiose mit verschiedenen Pflanzenarten finden kann, zum Beispiel bei Hornmoosen, Lebermoosen, Cycadeen (Wedelnacktsamer, „Palmfarne“) und dem Mammutblatt (Gunnera).
Auch andere Blaugrüne Bakterien (Cyanobacteria) sind Landbewohner. So sind sie zum Beispiel wichtige Bestandteile der mikrobiellen Krusten von Wüstenböden und der Tintenstriche an Kalkfelsen.

Für alle Cyanobakterien gilt, dass sie wie Algen und Pflanzen mithilfe von Lichtenergie zur Assimilation von Kohlenstoffdioxid in der Lage sind, wobei Wasser als Elektronendonator dient. Dabei wird Sauerstoff freigesetzt. Viele Cyanobakterien können darüber hinaus das Luftstickstoffmolekül assimilieren, das heißt, in organische Verbindungen einbauen. Diese Fähigkeit kommt nur bei kernlosen Lebewesen (Prokaryota) vor, zellkernhaltige Lebewesen (Eukaryota) zu sind hierzu grundsätzlich nicht in der Lage.

Zellifferenzierung

Nostoc-Zellkette mit Heterocyste

Nostoc-Zellkette mit Heterocyste

Wenn Zellen eines Lebewesens sich nach ihrer Teilung nicht trennen sondern zusammenbleiben größere Aggregate bilden, die einzelnen Zellen aber untereinander gleich sind, spricht man von „ZelKolonien“. Kommt es aber zu einer Differenzierung in verschiedene Zelltypen mit unterschiedlichen Funktionen, spricht man von Vielzellern. Ein Rostock und einigen anderen Blaugrünen Bakterien kann man eine solche Zelldifferenzierung beobachten, weshalb man sie als bakterielle Vielzeller auffassen kann: Die Nostoc-Zellketten bestehen aus „normalen“, Fotosynthese betreibenden Zellen, Stickstoff assimilierenden Heterocysten, der Überdauerung dienenden, sporenähnlichen Akineten und der Fortbewegung dienenden Hormogonien.

Zellkommunikation

Die einzelnen Zellen eines Nostoc-Zellfadens stehen über Nanoporen miteinander in Verbindung. Durch diese Poren stellen Multiproteinkomplexe die Brücken zwischen den Zellen her, durch die Signalstoffe und andere Stoffwechselprodukte transportiert werden können.

„Sternenrotz“

Sternenrotz am Straßenrand

Sternenrotz am Straßenrand

Die Kolonien von Nostoc commune sind schon den Menschen früherer Zeiten aufgefallen und sie haben sich Gedanken über ihre Entstehung und Herkunft gemacht. Der Name „Nostoc“ soll auf den Arzt und Alchemisten Paracelsus (1493-1541) zurückgehen, der die Gallerthüllen für einen „Sternenschnupfen“ hielt und daher angeblich das englische Wort nostril und die deutsche Übersetzung Nasenloch zu Nost-och verband. Andere Volksnamen sind zum Beispiel Erdgallerte, Zitteralge, Schleimling, Wetterglitt, Pockensnot, Sternschnupfen, Sternschnuppe, Sternschott, Sternräuspen, Sternschnäuze, Sternenrotz, Sternglugge, Hexenkaas, Hexendreck, Hexengespei, Leversee, Lebersee, Libbersee (Marzell ). Einige dieser Namen gehen auf die Vorstellung zurück, dass es ein „Lebermeer“ aus gallertigem Wasser gibt, in dem die Schiffe nicht vorankommen und die Gallertklumpen von Nostoc hielt man für Abkömmlinge dieses „geronnenen Meeres“.

Essbar

Mancherorts wurde und wird Nostoc als Nahrungsmittel genutzt. „Cushuru“ ist ein proteinhaltiges und eisenreiches Nahrungsmittel in den peruanischen Anden, das auf die Inkas zurückgeht. Auch in China ist Nostoc unter dem Namen „Ge-Xian-Mi“ als Nahrungsmittel bekannt.
Neuerdings versucht man auch, Medikamente aus Nostoc zu gewinnen. So befinden sich derzeit Substanzen gegen Krebskrankheiten oder HI-Viren in der Entwicklung. Auch für die Herstellung von Biokraftstoffen könnten Cyanobakterien künftig eine Rolle spielen.

Energiestoffwechsel der Lebewesen – Ein Wechselspiel zwischen Leben und Umwelt

Mit „Global Change“ oder Klimawandel bezeichnet man heute einen globalen Vorgang, bei dem ein Lebewesen, der Mensch, durch seine Aktivitäten die Umwelt so verändert, das sich die Umweltbedingungen auch für ihn ändern. Dieses Wechselspiel zwischen Leben und Umwelt ist allerdings so alt wie das Leben selbst. Als vor etwas weniger als 4 Milliarden Jahren auf der erstarrten Erdoberfläche die ersten Lebewesen entstanden und Stoffe aufnahmen und andere abgaben und dabei Lebensenergie gewannen (also Stoffwechsel machten), wurden die nützlichen Stoffe selten und die Abfallstoffe nahmen zu. So wäre ein schnelles Ende absehbar gewesen, wären nicht die Abfallstoffe zu Ausgangsstoffe anderer Lebensformen geworden, sodass es zu Rückkoppelungsschleifen kam.
Trotz solcher Recyclingprozesse waren die Grenzen für Leben so lange relativ eng gesteckt, bis als Abfallprodukt der Photosysthese auf Wasserbasis (Photolithoautotrophie) vor etwa 2,7 Milliarden Jahren ein Durchbruch erreicht wurde. Durch die Sauerstoffanreicherung in der Atmosphäre wurde die Versorgung mit freier Energie für die Lebewesen wesentlich einfacher. Diese Form der Photosynthese führte dazu, dass vor etwa 2,2 Milliarden Jahren die Atmosphäre einen so hohen Sauerstoffgehalt hatte, dass aerobe Atmung möglich wurde.

Litertatur/Quellen

Engelhardt, H. (2014): Nostoc – Multitalent mit bewegter Vergangenheit. Biospektrum , S. 226-227Flores, E./

Herrero, A. (2014): The Cell Biology of Cyanobacteria. Norfolk(UK): Caister Academic Press

Maldener, I. (2014): Nostoc – ein prokaryotischer Vielzeller. Biologie in unserer Zeit 44(5), S. 304-311

Probst, W. (2004): Was Cyanos alles können – Entdeckungen an einer vergessenen Bakteriengruppe. Unterricht Biologie Heft 299 (28. Jg.), S. 40-46, Seelze: Friedrich

Ward, P./Kirschvink, J. (2015): A new history of life.The radial new discoveries about origin and evolution of life on earth. London/New Dehli … Bloomsbury

Gärten für die Zukunft

Vortrag anlässlich der Präsentation der Chronik über das Schulbiologiezentrum Hannover am 4. November 2012

Meine Damen und Herren, liebe Freundinnen und Freunde des Schulbiologiezentrums Hannover,

ich freue mich, dass ich heute zu diesem festlichen Anlass, der Präsentation einer Chronik des Schulbiologiezentrum Hannover, zu ihnen sprechen darf. Herzlichen Dank, Herr Noack und Herr Reese, für die Einladung. Bei meiner Frau bedanke ich mich sehr für die Begleitung, ohne die ich diese Reise nicht hätte unternehmen können.

 Zwei besondere Gründe für meine Freude möchte ich nennen:

  • Seit ich das Schulbiologiezentrum Hannover  Ende der 1970 er Jahren kennen lernte, schätze ich diese Einrichtung sehr und die umfangreichen Publikationen von dort haben mir viele Anregungen und Impulse für meine Arbeit in Flensburg gegeben.
  • Gerhard Winkel, der in den Jahren 1961-1988 das Schulbiologiezentrum Hannover geleitet und zu seiner heutigen Form und Bedeutung gebracht hat, wurde am 29. Juni 1994 die Ehrendoktorwürde der Universität Flensburg verliehen. Nach Rudolf Karnick war er der zweite Ehrendoktor unserer Universität.

Mein Kollege und Freund Willfried Janßen sagte dazu in seiner Laudatio zu Winkels Ehrenpromotion: „Allein diese Leistung (nämlich der Aufbau des Schulbiologiezentrum) und ihre enorme Vorbildwirkung für zahlreiche im Zuge der Ökologiebewegung im Laufe der achtziger Jahre entstandenen Umweltzentren in Europa würde den Vorschlag zu Ehren Promotion rechtfertigen, da eine solche Entwicklung nicht nur mit organisatorischen Fähigkeiten und mit Energie verbunden war, sondern vor allem erfolgreich sein konnte, weil von Gerhard Winkel  … zugleich klar durchdachte pädagogische und biologiedidaktische Konzepte für dessen Wirksamkeit entwickelt wurden.“ So ist es.

 Das Schulbiologiezentrum Hannover ist aus zwei botanischen Schulgärten hervorgegangen und wie die heute vorgestellte Dokumentation beweist: Die Gartenpraxis als pädagogische Möglichkeit ist nach wie vor sein wichtigster Schwerpunkt.  Deshalb habe ich mir vorgenommen, Ihnen einige Überlegungen zum zukünftigen Umgang mit Gärten und zur Bedeutung der Gärten für die Zukunft  vorzutragen. Mir ist klar, dass dazu schon viel gesagt und geschrieben wurde –  zum Beispiel – natürlich –  von Gerhard Winkel, und erst vor kurzem, auf dem im Juni 2011 von der Deutschen Gartenbaugesellschaft und dem Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz organisierten Kongress „Zukunft Garten – Bedeutung für Politik, Wirtschaft und Gesellschaft“.

Dabei gab es einen Workshop „Bildung, Erziehung, Nachwuchsarbeit im Garten“, der zu folgenden publizierten Ergebnissen kam:

  • Der (Schul-)Garten ist ein idealer Lern-und Lebensort für alle

Aufgrund dieser Aussage wird gefordert

  • Der Garten braucht gesamtgesellschaftliche Akzeptanz, die Akteure brauchen politische Unterstützung im Kontext einer Bildung für nachhaltige Entwicklung
  • Die Gartenarbeit braucht eine gute curriculare Verankerung im Bildungssystem einschließlich Lehrer- und Erzieherausbildung, Fort-  und Weiterbildung

Wer  der hier Anwesenden wollte dem widersprechen? Allein, um alle zu überzeugen, bedarf es guter Argumente. Ich hoffe, ich wiederhole nicht nur Altbekanntes, wenn ich im Folgenden einige auf meinen persönlichen Erfahrungen gründende Überlegungen dazu  anstelle, unter welchen Bedingungen Lernen im Garten tatsächlich Bildung für nachhaltige Entwicklung sein könnte.

Ich möchte dies in vier Schritten tun:

1. Weltwunder, Naturoase, Lernort – Blitzlichter zur Gartengeschichte

2. Sind Gärtner bessere Menschen?

3. Persönliche Erfahrungen – mein Weg zur Veranstaltung „Ökologischer Gartenbau“

4. Die Erde als Garten

1. Weltwunder, Naturoase, Lernort – Blitzlichter zur Gartengeschichte

 Vor 2600 Jahren in Mesopotamien

So könnten die hängenden Gärten in Babylon ausgesehen haben

So könnten die hängenden Gärten in Babylon ausgesehen haben

Das antike Babylon liegt in einem auch im Winter angenehm warmen Klima. Der strahlend blaue Himmel hat zwar den Nachteil, dass es nur wenig regnet und damit von Natur aus nur ein spärlicher Pflanzenwuchs möglich ist, doch der nahe Euphrat gepaart mit einer ausgeklügelten Bewässerungstechnik lässt nicht nur Getreidefelder sprießen sondern auch prächtig Gartenanlagen gedeihen . Schon in der Antike legendär sind die „Hängenden Gärten von Babylon“. Ihr Ruf verbreitete sich in der ganzen antiken Welt – neben dem Koloss von Rhodos, den Pyramiden von Gizeh oder dem Leuchtturm von Alexandria – gelten sie als eines der sieben Weltwunder. Zwar sind die Gärten schon im Altertum zu Grunde gegangen, doch ihr Ruf hat sich bis in die Gegenwart erhalten. Von Xenophon wurden die von Babylon übernommenen Gärten der Perser später als „Paradeisos“ beschrieben. Diese Bezeichnung geht auf das altpersische „paira  daëza“ zurück und bedeutet „umhegter Garten“. Die Gärten des Vorderen Orients – vermutlich die ursprünglichsten und ersten Gärten in der Menschheitsgeschichte – nahmen sich in wüstenhafter Umgebung die wasserreiche Oase zum Vorbild. Im Schatten von Dattelpalmen und Sykomoren kann der Müßiggänger, umgeben von säuselnden  Winden und plätschernden Bächen  einen Vorgeschmack auf das himmlische Paradies erleben. Diese Vorstellung des Gartens als Paradies, also als ein Ideal einer vollkommenen Welt, ist sicher noch älter als die Gärten der Semiramis. Oasengärten in unwirtlicher Wüstenlandschaft: Nicht nur Erinnerungen an einen paradiesischen Urzustand, sondern auch Vorahnung eines glücklichen Endzustandes, eines goldenen Zeitalters, wie es von Hesiod oder Ovid beschrieben wurde.

Griechen und v. a. Römer übernahmen Teile der orientalischen Gartenkultur, bei der Machtübernahme durch germanische Stämme ging vieles verloren, aber über die Klöster  kamen Gartenkenntnisse nach Mitteleuropa, z. B. über Winifried Strabo auf der Reichenau. Doch nun stand der Nutzgarten im Vordergrund.  Erst als in der Renaissance durch den Kontakt mit den Arabern als kulturellen Bewahrern der antiken Welt Kunst und Wissenschaften des Abendlandes neu belebt wurden, gab es eine Blüte der Gartenkultur in Europa.

Vor 300 Jahren in Versaille

Einen ersten Höhepunkt erreicht diese Gartenkultur im Barock. Dem Zeitalter des Rationalismus entsprechend ist der Barockgarten ein ganz und gar künstliches, durch den Menschen geschaffenes Gebilde. Bei der Planung wird höchster Wert auf Regelmäßigkeit und Symmetrie gelegt. Die ornamentalen, nach strengen Regeln in Formen und Strukturen gezwungenen Anlagen sind exakt durchorganisiert und stellen einen krassen Gegensatz zu wilden und chaotischen Natur dar. Sie sind Symbol für die Kraft des menschlichen Geistes und seines Erfindungsreichtums, der sich die Natur untertan machen kann (und auch machen soll), auch prunkvolle Machtdemonstration des absolutistischen Herrschers, in dessen Auftrag der Garten angelegt wurde. Oft werden diese Gärten angereichert mit exotischen Gewächsen, die aus den gerade erst entdeckten und unterworfenen Kolonien eingeführt wurden. In einem gut gepflegten Barockgarten bleibt nichts dem Zufall überlassen.

Vor 200 Jahren in Wiltshire in SW-England (Stourhead Garden)

In der Romantik wird die Gartengestaltung urwüchsiger. Der Landschaftsgarten idealisiert eine ländliche Idylle mit wohl dosierten Einsprengseln künstlich nachgebildeter wilder Natur: Waldschluchten, Wasserfälle, Grotten ja sogar kleine Felsengebirge, die noch romantischer sind als die wirkliche Natur. Anders als im Barockgarten wird von diesem Gartentyp mehr das Gemüt als der Geist angesprochen, Bilder von Landschaften, gewissermaßen Archetypen, die wir in unserem Inneren tragen. Es gibt mehrere Untersuchungen aus den 1970iger und 80iger Jahren , die von E. O. Wilson bekannt gemacht wurden und die darauf hindeuten, dass eine offene Savannenlandschaft mit guter Aussicht und der Nähe eines Gewässers aufgrund genetischer Disposition von Menschen als besonders angenehm empfunden wird. Der englische Landschaftsgarten entspricht weit gehend den Aspekten einer solchen „offenen Weidelandschaft“. Bis heute entsprechen auch die beliebtesten und teuersten Wohnlagen diesem Idealtypus. Eine mögliche Erklärung für diese angeborene Vorliebe wäre, dass in einer solchen afrikanischen Savanne die Menschenvorfahren einige Millionen Jahren lang zuhause waren (Wilson 1984).

Vor 40  Jahren im Aargau in der Schweiz

Der Begriff  „Naturgarten“  trat zwar schon Ende des 18. JH zusammen mit dem Landschaftsgarten auf, aber erst ab den 1970iger Jahren spielt er – als Idee eines privaten Naturschutzgebietes –  eine größere Rolle in der Umwelt- und Naturschutzbewegung. Während früher der paradiesische Zustand gerade die gezähmte, veränderte, mehr oder weniger stark manipulierte Natur war, ein gepflegter Hort in der Wildnis, ist nun Wildnis so selten geworden, dass der Naturgärtner versucht, in der Kulturlandschaft ein Stückchen Wildnis als sein Paradies zu erhalten (vgl. z. B. Witt 1996: Naturoase Wildgarten). Programmatisches Werk aus den 1970 er Jahren ist „Der Naturgarten“ von Urs Schwarz, in dem gefordert wird Einheimische „Unkräuter“ zu Kräutern und fremdländische Gewächse zu Unkräutern zu deklarieren und entsprechend zu behandeln.

Louis Le Roy plädiert in seinem Werk „Natur einschalten – Natur ausschalten“ dafür: „Lasst es wachsen“ . Er schlägt einen völlig neuen Umgang mit dem „Grün in der Stadt“ vor: Spontane Vegetation soll geplante Pflanzungen und Beete ersetzen, der Gartengestalter pflanzt nicht, er schafft allenfalls günstige Voraussetzungen für selbst sich entwickelnde Vielfalt : durch Bauschutthaufen, Lehmkuhlen, Kiesschüttungen, Natursteinmauern und Reisigstapel. Der avantgardistische Landschaftsarchitekt erhielt in der niederländischen Stadt Heerenveen die Möglichkeit, seine Ideen in die Tat umzusetzen. Aber nur verhältnismäßig wenige Gemeindeverwaltungen und private Gartenbesitzer folgten den radikalen Forderungen der Natur-Garten-Revolutionäre.

Dass diese Sehnsucht nach dem eigenen kleinen Naturschutzgebiet trotzdem bis heute weiter verbreitet ist, als wirklich naturnah gestaltete Gartenanlagen, kann man zum Beispiel daran erkennen, dass sehr viele Gartenbesitzer wenigstens ein Biotop (gemeint ist damit ein der ursprünglichen Natur nachempfundener Lebensraum, meist ein Teich) in ihren Garten bringen wollen. Wildtiere versuchte man schon früher in den Garten zu locken, zum Beispiel in den Schrebergarten mit Starenkästen. Heute gibt es viele Bauanleitungen und Angebote fertiger Behausungen, mit denen man nicht nur verschiedene Vogel- und Fledermausarten, Igel, Kröten, Blindschleichen oder Eidechsen , sondern auch Wirbellose wie Wildbienen, Florfliegen, Ohrkneifer und Spinnen in seinen Garten holen und dauerhaft ansiedeln kann. In Gerhard Winkels Schulgartenhandbuch wird schon 1985 beschrieben, wie man solche „Wohnräume für Tiere“ an einem Platz, einer so genannten Gartenarche, konzentrieren kann .

Fazit: Immer haben Gärten etwas mit dem Weltbild, den Sehnsüchten und Projektionen des Kulturkreises zu tun, dem sie entstammen und oft werden sie – wie auch schon die ersten Gärten in Ägypten, Babylon, Indien oder Persien – als Abbild eines glücklichen bzw. geglückten Weltplanes verstanden.

Welche Gartenkonzepte könnten in der Zukunft wichtig werden?

Welche Ziele, welche Vorstellungen, welche gesellschaftlichen Bedingungen könnten für Gartenkonzepte der Zukunft wichtig werden?

  • In unserer Gesellschaft wird der Anteil älterer Menschen immer größer – wird man deshalb bei öffentlicher und privater Gartengestaltung besonders auf Altersgerechtigkeit achten?
  • Junge Leute interessieren sich immer weniger für reine Naturlandschaften, Parkanlagen, Gartenschauen – wird öffentliches und privates Grün deshalb immer mehr mit (möglichst interaktiven) Kunstobjekten angereichert? Oder werden Gärten vermehrt Hintergrund großer Veranstaltungen (Events)?
  • Immer mehr Menschen vermissen echte Abenteuer – wird deshalb bei der Landschaftsplanung immer mehr darauf geachtet werden, Orte einzurichten, an denen solche Abenteuer möglich werden (Kletterfelsen, Baumkletterstrecken, Wildwasserbäche, Hochbrücken zum Bungee-Jumping…)?
  • Wird man – um dieser Entwicklung entgegen zu wirken – Gartenerlebnisse und Gartenarbeit vermehrt in Kindergärten und Grundschulen einführen – mit kindgerechten Gärten?

2. Sind Gärtner bessere Menschen?

Die Pädagogen hoffen natürlich, dass die Zukunft der Gärten als Bildungseinrichtungen an Bedeutung gewinnen wird, entsprechend der eingangs zitierten Aussage des Zukunft-Garten-Workshops

  • Der Garten ist ein idealer Lern-und Lebensort für alle

„Wenn Sie den Anregungen dieses Buches folgen mögen, dann wird ihr Garten zukunftsfähig, … Ihre Ernährung gesünder und sie leisten einen konstruktiven Beitrag für eine nachhaltige, zukunftsfähige Gesellschaft in der Welt“schreiben die Wuppertaler Pädagogen Gerda und Eduard Kleber  im Vorwort zu ihrem 1999 erschienenen Buch „Gärtnern im Biotop mit Mensch“, das 2011 in einer neuen Auflage erschienen ist. Die Liebe zum eigenen Garten soll die Liebe zu unserem Planeten als Folge haben und deshalb sollte jeder Mensch ein Gärtner sein, denn nur ein solcher  „kann ein eigenes Lebenskonzept gewinnen, das im Einklang mit dem Lebenssystem unseres Planeten steht „.

Das sind wahrhaft hohe Ansprüche. Sie postulieren, dass die Verbundenheit mit einem Garten und die Tätigkeit des Gärtners zu einer Lebensweise  führen, die man im heutigen Sprachgebrauch als „nachhaltig“ bezeichnen würde.

Dazu passt auch der Leitspruch der Deutschen Gartenbaugesellschaft, der in den 1980iger Jahren von ihrer langjährigen Präsidentin Gräfin Sonja Bernadotte formuliert wurde „Gärtnern  um der Natur und des Menschen Willen“.

 So könnte man den Eindruck gewinnen, dass das Gärtnern an sich schon zu „besseren“ , d. h. zukunftsfähigeren Menschen führt. Aber stimmt diese Vorstellung mit der Wirklichkeit überein? Können Gärten nicht sehr unterschiedlich betrieben und bewirtschaftet werden?

Der Augenschein spricht  dafür, dass sich solche positiven Persönlichkeitsveränderungen bei Gärtnern – es soll in Deutschland (nach der Deutschen Gartenbaugesellschaft)  davon immerhin 15 Millionen geben –  normalerweise nicht von alleine einstellen. Schaut man sich die Gärten und die darin aktiven Menschen an, so bekommt man viel mehr den Eindruck, dass das Aussehen von Gärten etwas mit der Persönlichkeit ihrer Besitzer, mit ihrem Lebensstil, ihrer Denkweise und ihren Eigenschaften zu tun hat, weniger aber, dass diese Persönlichkeit durch den Gartenbesitz oder durch das Arbeiten im Garten stark verändert wird: In vielen Gärten wird einem starken Ordnungsbedürfnis gefrönt, dem man nur durch sehr viele oft aufwendige Eingriffe und hohem Maschineneinsatz gerecht werden kann.

Viel zitiert und demonstriert, die Rasenpflege: Der Rasen im Privatgarten ist ein gutes Beispiel dafür, dass es ein wichtiges Lernziel für nachhaltige Gärtnerei sein sollte, dem Prinzip der Eingriffsminimierung zu folgen. Welcher Eingriff ist unbedingt nötig, so sollte sich der Gärtner fragen, um ein bestimmtes Ziel zu erreichen – und natürlich auch: Ist das angestrebte Ziel sinnvoll ? Reinhard Mey hat vor 10 Jahren im „Sylter Rasenstreit“ die Gemeinde Kampen  und seine Nachbarn nicht überzeugen können,dass weniger Rasenpflege sinnvoll wäre. Immerhin ist dabei ein auch pädagogisch einsetzbares Chanson entstanden  „… Irgendein Depp mäht irgendwo immer …“

Resümé: Es bedarf ganz bestimmter Voraussetzungen und persönlicher Erfahrungen, damit Lernen im Garten zu Bildung für Nachhaltigkeit wird – wie dies ja auch die Klebers betonen: „“Wenn Sie den Anregungen dieses Buches folgen…“

Ich möchte dazu ein bisschen von meinen eigenen Erfahrungen berichten:

3. Persönliche Erfahrungen  – mein Weg zur Veranstaltung „ökologischer Gartenbau“

Für mein ganzes Leben, für meine Entwicklung und Bildung waren Naturerlebnisse und Naturbegegnungen von entscheidender Bedeutung. Viele andere Menschen haben ähnliche Erfahrungen gemacht, einige haben darüber auch geschrieben. Edward Osborn Wilson versuchte dies mit seinem Werk  „Biophilia“ sogar evolutionsbiologisch zu begründen.

Auch wenn es schwierig ist , den Bildungswert von Naturerlebnissen quantitativ zu belegen, wird kaum jemand bestreiten, dass Naturkontakte häufig angenehme Empfindungen erzeugen, ja glücklich machen. Vieles spricht sogar dafür, dass die psychische und physische Krankheiten heilen können. Für die Entwicklung von Kreativität und Fantasie können intensive Begegnungen mit der Natur sehr förderlich sein. Dies gilt insbesondere für die normale Entwicklung von Kindern und Jugendlichen.

Die Erkenntnis, dass der unmittelbare Umgang mit der Natur bildenden Wert hat, wurde immer wieder betont: Im 18. Jahrhundert  z. B. Von Jean Jaques Rousseau, im 19. Jahrhundert z. B. von Henry David Thureau. Gerhard Trommer hat sich in jüngerer Zeit ausführlich mit der „pädagogischen Herausforderung Wildnis“ beschäftigt und die Bedeutung unberührter Natur für die Erziehung und Bildung deutlich gemacht.

Wie lässt sich diese „pädagogische Kompetenz“ der Natur erklären? Ein Grund ist sicherlich ihre Vielseitigkeit und Offenheit, gleichzeitig ihre Unergründlichkeit, die nicht nur eine Definition sehr schwer macht, sondern aus jeder Erklärung wieder neue Rätsel entstehen lässt. In Gegensatzpaaren wird vielleicht deutlicher, was ich meine:

  • Der äußeren Natur steht die innere Natur des Menschen gegenüber.
  • Allgemeingültige Naturgesetze bestimmen den Kosmos. Gleichzeitig ist die Natur chaotisch, unvorhersehbar, einem unumkehrbaren Zeitablauf unterworfen . . .
  • Der viel beschriebenen und empfundenen Einheit der Natur steht ihre sprichwörtliche Vielfalt gegenüber

Diese spannungsreichen Polaritäten, diese Vielseitigkeit, die Offenheit zulässt, ist der große Vorzug einer Erziehung oder Bildung durch die Natur.

Bei der Didaktik der Erziehung oder Bildung durch die Natur geht es vor allem darum, gute Gelegenheiten zu schaffen, Begegnungen und Erlebnisse zu ermöglichen.

Solche Überlegungen war der Grund dafür, bei meinem Unterricht zukünftigen Lehrerinnen und Lehrern möglichst viele Gelegenheit zu unmittelbarer Naturbegegnung zu geben. Mit Exkursionen und  „Biologie im Freien“ versuchte ich, dieses Ziel zu erreichen. Dabei waren Erlebnisse, auch Abenteuer, körperliche Anstrengung und ästhetische Erfahrungen  wichtig.

Angeregt durch das Freilandlabor Dönche in Kassel, das uns 1983 von Herrn Hedwig und Herrn Witte anlässlich einer Tagung der Sektion Fachdidaktik des VBiol vorgestellt wurde, haben wir in Flensburg auch eine solche Einrichtung geschaffen. Eine weitere Anregung kam von IPN in Kiel. Ich wurde gefragt, ob ich Interesse daran hätte ein amerikanisches Programm für Freilandbiologie an mitteleuropäische Verhältnisse anzupassen. Das Ergebnis war dann das Büchlein, das Karl Kuhn, Karl Schilke und ich 1986 veröffentlichten, gewissermaßen ein Rezeptbuch für mögliche Freilandaktivitäten. Es wird vielleicht nicht ganz den heutigen Forderungen nach selbstbestimmtem und selbstreflexivem Lernen gerecht. Aber Hauptziel war es, Lehrerinnen und Lehrern durch diese relativ genauen „Vorschriften“ die Angst vor dem Hinausgehen zu nehmen.

Aber wie kam ich zum Gartenbau?

Anfang der 1980 er Jahre gingen die Studentenzahlen unserer Hochschule stark zurück. Im Wintersemester 1984/85 hatten, wir glaube ich, nur vier Neuimmatrikulierte in der Biologie. Die Hochschule hatte Sorge um ihren Bestand und versuchte, durch neue Studiengänge, die nicht zum Lehrerberuf führten, die Studentenzahlen etwas aufzubessern. Ein solcher Studiengang, der vom damals besonders studentenarmen Fach Technik initiiert wurde, nannte sich zunächst  „Technikpädagoge im Entwicklungsdienst“ und war für Studierende aus Deutschland und aus Entwicklungsländern gedacht. Wegen dieser Internationalität wurde er später in „ARTES“ – Appropiate rural technology and extension skills – umbenannt. Die Biologie beteiligte sich mit Veranstaltungen zur Ökologie, z. B. mit einer praktisch orientierten Veranstaltung zum Gartenbau, die auch für unsere Lehramtsstudenten offen war. Mein Partner war Meinolf Hammerschmidt,  Lehrer und Gärtner, der gerade aus Afrika zurückgekommen war, wo er als Entwicklungshelfer vor allem die Anlage von kleinen, der Subsistenzwirtschaft dienenden Gärten betreut hatte. Er wurde von der Hochschule angestellt.  Der besondere Pfiff dieser Veranstaltung war, dass Studierende aus Afrika, Lateinamerika und  Indien mit unseren Lehramtsstudenten zusammen im Garten arbeiteten und über den Garten und verschiedene Projekte nachdachten. Das war für mich und meinen Unterricht eine ganz neue und spannende Erfahrung: Im Garten geht es auch um unmittelbare Naturbegegnungen, aber auch um zielgerichtete Manipulation der Natur, um Nutzung und Gestaltung, um Pflege.

 In den 1990 er Jahren wurde der Studiengang immer mehr in Richtung Energiewirtschaft und Energiebereitstellung umgestellt. Meinolf Hammerschmidt wurde nicht länger von der Hochschule beschäftigt und gründete eine Baumschule für alte Obstsorten. Da sich die Gartenbauveranstaltung mittlerweile aber großer Beliebtheit bei den Lehramtsstudenten erfreute, wurde sie von mir weitergeführt und Hammerschmidt half mir dabei als Lehrbeauftragter.

Mit  mehr oder weniger großem  Erfolg  wurden unterschiedlichste Dinge ausprobiert, wobei wir oft den Vorschlägen der Studierenden folgten (Kompostwirtschaft, Hochbeet, Frühbeet, Einsatz von Folien, Foliengewächshaus, als Sonnenfalle konzipierte  Kräuternische, ausprobieren verschiedener Bewässerungssysteme, Ansiedlung von „Nützlingen“, Erdkeller, Pilzzucht). Natürlich spielte unter Meinolfs Anleitung auch das Veredeln und Anziehen von Obstgehölzen eine wichtige Rolle.

Ich nannte die Veranstaltung „Ökologischer Gartenbau“ und es ging mir darum, parallel zu der praktischen Arbeit im Garten allgemein ökologische Inhalte aber auch Artenkenntnis zu vermitteln. Ein großer Teil der praktischen Arbeit bestand zwar im Unkraut jäten – nicht  unbedingt, weil das für mich so wichtig war, sondern weil es den Studierenden ein Bedürfnis war, ihre Beete möglichst „sauber“  zu halten. Zum Abschluss jeder praktischen Arbeitsphase gab es aber eine Besprechung, in der alle gejäteten Unkräuter ebenso wie alle zufällig mit gefundenen und dann in Gläschen oder Tüten gesammelten Tiere besprochen wurden. Denn was man gut kennt, mit dem wird man sorgfältiger und vorsichtiger umgehen. „Natur erleben und verstehen“ war die Grundlage unserer Arbeit im Garten.

Unsere Erfahrungen sind in die von 1997-2001 vom Kallmeyer Verlag herausgegebenen Hefte „Gärten zum Leben und Lernen“ eingeflossen.

 Die Rückmeldungen, die ich zu dieser Veranstaltung von Studierenden bekam, waren durchweg positiv. Einige waren richtig begeistert und ich bin sicher , sie werden auch als Lehrerin oder Lehrer versucht haben, einen Schulgarten zu etablieren. Aber ich mache mir keine Illusionen,das sind doch verhältnismäßig wenige gewesen. Ob sie durch diese Arbeit wirklich andere Menschen geworden, sind wage ich nicht zu beurteilen. Immerhin könnte ich mir vorstellen, dass sie dabei eine etwas andere Einstellung zur Gartenbewirtschaftung und auch zur Landbewirtschaftung  insgesamt bekommen haben.

Ein Beispiel: Wenn der frisch gepflanzte Salat von einer großen Zahl Spanischer Wegschnecken  sofort weggefressen wird, gibt es ganz unterschiedliche Möglichkeiten, dies zu verhindern: Man kann die Schnecken in Fallen fangen, man kann versuchen, ihnen den Zugang durch einen Schneckenzaun zu verwehren, man kann sie mit chemischen Mitteln (Schneckenkorn) bekämpfen und man kann sie absammeln. Ein Student hat auf seinem 1,5  m² großen Gartenstück in drei Wochen über 700 Schnecken abgesammelt, indem er sein Beet jeden Abend nach Sonnenuntergang aufsuchte. Die Belohnung waren gut gewachsene Pflanzen, aber war der Aufwand vertretbar? Und die nächste Frage: Was passiert mit den gesammelten Schnecken?

Angesichts solcher Erfahrungen erhält eine Diskussion über ökologischen bzw. biologischen Landbau deutlich mehr Substanz und Tiefe.

4. Die Erde als Garten

Ein Gärtner sorgt in seinem Garten für die angebauten Pflanzen, er pflegt sie so, dass sie wachsen und sich gesund entwickeln, schön blühen, eventuell auch Früchte tragen oder als Salat oder Gemüse geerntet werden können. Aus dieser pflegerischen Sorgfalt, die man bei einem liebevoll wirkenden Gärtner ebenso finden kann, wie bei einem Schäfer, dem „guten Hirten“, hat Gerhard Winkel ein pädagogisches oder didaktisches Prinzip entwickelt, das Prinzip des Pflegerischen. Winkel sieht darin eine Leitidee, die Menschen verschiedener Weltanschauungen, Ideologien und Religionen akzeptieren könnten, und die deshalb geeignet wäre – ja, man kann es ruhig so sagen – die Erde vor dem Untergang zu retten.

„Zehn Jahre lang waren mir diese Bedingungen klar, und ich suchte intensiv nach einer übergreifenden Leitidee, bis mir 1976 unter einer Eisenbahnbrücke eigentlich ohne jeden Anlass der Begriff des pflegerischen durch den Kopf schoss. … Wer überhaupt bereit war, sich auf das Problem gemeinsamen Handelns bei unterschiedlicher Weltanschauung einzulassen, konnte mit dieser Leitvorstellung etwas anfangen.“ In seinem Werk „Umwelt & Bildung“ hat sich Winkel ausführlich mit dem von ihm entwickelten „Prinzip des Pflegerischen“ auseinandergesetzt und erläutert, warum er es für ein zentrales Bildungsziel hält: „Das Pflegerische meint also immer Umfassendes, nämlich den pfleglichen Umgang mit den Pflanzen und Tieren, den Landschaften und Ökosystemen, den Rohstoffen und Vorräten, der individuellen Gesundheit, dem sozialen Zusammenleben und den Kulturgütern. Will man es mit anderen Begriffen ausdrücken, umfasst das Pflegerische die Solidarität mit allen Pflanzen, Tieren, Menschen und ihren jetzigen und zukünftigen Bedürfnissen.“

Ein Garten ist sicherlich ein gutes Modell, an dem sich das pflegerische Prinzip einüben und weiter entwickeln lässt. Aber: Ein Garten ist ein umfriedeter Raum, zunächst einmal abgeschirmt und getrennt von seiner Umgebung. In den ersten Oasengärten des Orients abgeschirmt gegen die feindliche Wüste, im Barockgarten abgeschirmt gegen die wilden Naturkräfte,  im Naturgarten abgeschirmt gegen die vom Menschen zerstörte Landschaft. Der Garten ist also eine Art Schutzgebiet, das allerdings nicht, wie die Wildnis-Naturschutzgebiete Nordamerikas, sich selbst überlassen bleibt, sondern gepflegt wird.

In unseren Naturschutzgebieten nennt man das „Biotoppflege“. Es wird beweidet, gemäht, entkusselt, auf den Stock gesetzt, aufgestaut, eventuell auch abgebrannt.

So gesehen ist der Naturschutz bei uns in Mitteleuropa in vielen Bereichen schon eine Art Gartenbau. Und das macht durchaus Sinn. In unserer reich strukturierten, langsam gewachsenen Kulturlandschaft können Pflegemaßnahmen vorindustrielle Kulturzustände erhalten und damit Arten-und Ökosystemvielfalt  fördern.Frau werden ich diese Schilderung wie viele in O wie Frau war ja immer schon so sehr an meine Oma will nun wieder in obwohl nur weil Frau und ich werde ich Ihnen nicht wie immer sie sich in+ Frau in langen Wellen der Mail mit der ich morgen mal du eine

 Der entscheidende Schritt scheint mir aber zu sein, die „Grenzen des Gartens“ aufzuheben. Der Garten, den es zu pflegen gilt, ist unser ganzer Planet. Es gibt keine Zäune mehr, außerhalb derer wir uns unserer Verantwortung entziehen können. Alle unsere Maßnahmen haben grenzenlose Auswirkungen. Die Sorgfaltspflicht endet nicht an der Grenze eines Naturgartens, eines  Naturschutzgebietes oder eines Biosphärenreservats. Die ganze Erde muss so fürsorglich betrachtet werden, wie unser Vorgarten, ja wie unser Wohnzimmer. Wir sind verantwortlich für den ganzen Bioplaneten. Hubert Markl formulierte dies bereits 1986 sehr schlüssig: „Alle Überwindung der Natur durch Kultur erhält ihren Sinn und ihre Rechtfertigung einzig und allein daraus, dass nur dies die Kultur, dass nur dies den Menschen selbst als Kulturwesen fortbestehen lässt. Der Kulturauftrag der Naturunterwerfung ist also aus sich heraus zugleich der Kulturauftrag zur Pflege der so unterworfenen Natur, genauer: zur Erhaltung ihrer Fähigkeit, Menschenkultur zu tragen und zu ertragen.“

So wie der Planet insgesamt immer mehr von menschlichem Wirken beeinflusst und verändert wird, steigt die Verantwortung des Menschen für seine Erde.

Dabei müssen ihm die beiden Eigenschaften helfen, die ihn von allen anderen Lebewesen unterscheiden, seine Intelligenz und seine Empathiefähigkeit. Erst diese Fähigkeit, sich in andere hinein versetzen zu können, nicht nur in andere Menschen, sondern auch in Tiere, vielleicht sogar in Pflanzen, lässt die Umwelt zur Mitwelt werden.

Winkel schreibt in seinem Buch „Umwelt und Bildung“(S.57): „Der Satz: Der Mensch braucht die Natur, aber die Natur braucht den Menschen nicht, ist schlicht falsch: Gerade in der jetzigen Situation unseres Planeten kann nur der Mensch gesund pflegen, was er krank gemacht hat“. Das ist insofern auch meine Meinung, als „die Natur“ den Menschen zwar nicht brauchte, bevor es ihn gab. Aber durch die besonderen Fähigkeiten dieser neuen Spezies, des Menschen, haben sich die Bedingungen geändert – fast vergleichbar mit der  Situation auf der Urerde, als die ersten Lebewesen entstanden sind. Die großen Möglichkeiten, die diese Spezies befähigen, massiv in den Naturhaushalt einzugreifen und Veränderungen zu bewirken betreffen zwar nur einen vernachlässigbaren Teil der ganzen Natur, des Kosmos, aber doch den ganzen Bioplaneten Erde. Noch gibt es auf der Erde relativ ursprüngliche Natur, die von Menschen direkt wenig beeinflusst wird. Dies gilt für Reste von Urwäldern ebenso, wie für Wüstengebiete, arktische und antarktische Gebiete und einige Hochgebirgsregionen. Aber es gibt keinen Fleck auf der Erde mehr, der nicht doch zumindest indirekt von der Art Homo sapiens beeinflusst wird – sei dies  durch die allgegenwärtigen Plastikabfälle oder auch „nur“ über die durch menschliche Aktivitäten bewirkten Klimaveränderung.  Viele dieser menschlichen Einflüsse haben für den Fortbestand eines auch für Menschen günstigen Planeten nachteilige Auswirkungen. Die kausalen Zusammenhänge werden immer deutlicher. Dies bedeutet aber auch, dass man daran etwas ändern kann. Wenn wir davon ausgehen, dass wir in unseren Entscheidungen frei sind, dann haben wir die Möglichkeit, auf die Zukunft dieses Planeten willentlich Einfluss zu nehmen.

 Die letzte Veranstaltung zum ökologischen Gartenbau habe ich im Sommersemester 2004 durchgeführt. Wie würde ich die Veranstaltung heute erweitern?  Es wäre mir wie damals wichtig, dass die Studierenden eigene Ideen entwickeln und umsetzen können. Dabei würde ich versuchen, dazu anzuregen, ökologische Gesichtspunkte bei allen Maßnahmen zu berücksichtigen. Unter „ökologisch“ verstehe ich eine rationale, möglichst viele Gesichtspunkte berücksichtigende Herangehensweise. Einmal soll nach Erklärungen für  alle auftretenden Effekte , insbesondere auch bei Misserfolgen, gesucht werden. Zum anderen sollen  bei allen  Maßnahmen zukünftige Folgen abgeschätzt werden. Dabei ist ein wichtiges Prinzip die Eingriffsminimierung.

Stärker noch, als ich dies früher getan habe – würde ich darauf hinarbeiten, dass der Garten als Modell für unseren Planeten gesehen werden kann. Und ich würde versuchen, Gartenarbeit, Arbeiten im „Freilandlabor“ und Exkursionen inhaltlich stärker miteinander zu verbinden.

Seit einigen Jahren breitet sich in den Großstädten –  nicht nur in Europa sondern auf allen Kontinenten –  eine neue Art der Gartenkultur aus. Diese „Stadtgartenkultur“ – urban gardening – hat nichts mit den gepflegten Grünanlagen der Grünämter zu tun, sie nennt sich auch Guerillagärtnerei, es begann mit dem heimlichen Bepflanzen öffentlicher Plätze und Anlagen, dem Verteilen von „Samenbomben“, der Pothole- (=Schlagloch) Gärtnerei. Mittlerweile wird über „Urban Gardening“ sogar in den Tagesthemen berichtet, der Prinzessinengarten in Berlin-Kreuzberg und seine Initiatoren Robert Shaw und Marco Clausen sind international bekannt.

 Urbane Gärten erschließen Räume in der Stadt, in denen die biologische ebenso wie die soziale Vielfalt gedeiht“ schreiben die Initiatoren des Prinzessinengartens.

Ähnliche Ansätze kann man auf dem im Zentrum Berlins gelegenen Gelände des ehemaligen Flughafens Tempelhof beobachten. Ich hätte das auch für den Platz vorgeschlagen, auf dem der „Palast der Republik“ stand und auf dem jetzt das alte Stadtschloss als eine art Attrappe wieder entstehen soll (vgl. auf dieser Homepage den Artikel „Eine Pyramide für Berlin“).

  • Es gefällt mir, dass diese neuen Stadtgärten mit ihren Benutzern zusammen wachsen und weiterentwickelt werden,
  • es gefällt mir, dass auch Kinder und Jugendliche einbezogen werden,
  • es gefällt mir, dass die Gärten als Verbindungsglied und Schmelztiegel zwischen den verschiedenen Bevölkerungsgruppen genutzt werden,
  • es gefällt mir, dass diese Gärten einen starken mobilen Anteil haben, dass ihre Saaten und Pflanzkübel plötzlich an anderen Stellen der Stadt wachsen und keimen können.

Wenn ich jetzt noch einmal eine Gartenbauveranstaltung in Flensburg oder in einer anderen Stadt machen dürfte, dann würde ich versuchen, stärker in diesem Sinne zu wirken.

Kann man nicht hoffen, dass auf diesem Wege aus den sich immer weiter ausdehnenden urbanen Zentren der Erde heraus ein neues Grün entsteht, zwar keine unberührte Natur, keine Wildnis, aber doch in ihrer Spontanität und Unbestimmtheit durchaus wildnisähnliche Gärten, nicht nur ein ökologischer und ein ästhetischer Gewinn, sondern auch ein ökonomischer – gewissermaßen eine Subsistenzwirtschaft in der Großstadt, Permakultur in Londons City, Agroforestry in Manhattan, Traubenlese an rebenumrankten Wohnblockfassaden in Berlin- Marzahn?

Das Lernziel heißt: Die Erde ist unser Garten.

Die Stadt als Garten – die Gärten der Semiramis könnten ein Vorbild sein

Die Stadt als Garten – die Gärten der Semiramis könnten ein Vorbild sein

Zehn Jahre Nachhaltigkeitsstrategie

Heute vor zehn Jahren, am 17. April 2002, hat die rot-grüne Bundesregierung einen Beschluss über eine Nachhaltigkeitsstrategie gefasst, der unter der Überschrift “ Perspektiven für Deutschland – Unsere Strategie für eine nachhaltige Entwicklung“ veröffentlicht wurde und über das Internet heruntergeladen werden kann. Es geht darin um Generationengerechtigkeit, Lebensqualität, sozialen Zusammenhalt, internationaler Verantwortung und die Managementregeln, mit denen Nachhaltigkeit zu erreichen wäre.

Die Grundidee ist sehr einfach und einsichtig: Wir wollen heute so leben, dass auch noch  in Zukunft ein „gutes Leben“ möglich ist. ‚Until the next big asteroid hits us, the future of life on earth will depend much more on humanity than on anything else“  (G. C. Daily, Nature 411, 17 . Mai 2001,p.245). Damit wird sehr gut ausgedrückt, dass die Zukunft der Erde davon bestimmt wird, was die Menschheit und die einzelnen Menschen heute tun. Die Verwendung des Personalpronomens „uns“ für die Erde geht von einem globalen Zusammengehörigkeitsgefühl aus. ln den Menschen als Bestandteilen der Biosphäre wird sich die Natur „ihrer selbst bewusst“. Aus diesem Bewußtsein ergibt sich Verantwortung , und zwar eine inklusive Verantwortung, die den ganzen Planeten einschließt. Der Hinweis auf den Asteroiden lässt einen kleinen Spalt offen für Fatalismus und ein bisschen  Fatalismus ist für die Psychohygiene sehr gesund.

Die Erkenntnis, dass nachhaltiges Wirtschaften wichtig ist, stammt ursprünglich aus der Forstwirtschaft. In forstwirtschaftlichen Zusammenhang wurde der Begriff schon 1713 verwendet und zwar von dem Oberberghauptmann Hans Carl von Carlowitz (1645-1714). Er hatte Sorge, dass bei der weiteren exzessiven Nutzung von Bauholz im Bergbau in naher Zukunft der Nachschub aus den Wäldern gefährdet wäre. Noch klarer formulierte dies 1791 der Forstwissenschaftler Georg Ludwig Hartig (1764-1837) in seinen “ Anweisungen zur Holzzuchzt für Förster“, in denen er klar zum Ausdruck brachte, dass nur so viel Holz geschlagen werden darf, wie auch nachwächst (vgl. Wikipedia).

Erst im 20. Jahrhundert wurde dieses Nachhaltigkeitsprinzip von der Forstwirtschaft auch auf andere Wirtschaftsbereiche übertragen. In der Konferenz der Vereinten Nationen über Umwelt und Entwicklung (United Nations Conference on Environment and Development, UNCED; häufig als Erdgipfel bezeichnet vom 3.bis 14. Juni 1992 in Rio de Janeiro) wurde das Anstreben einer nachhaltigen Entwicklung als wichtigstes Ziel formuliert. Für den Juni dieses Jahres wurde mit Rio +20 ein weiteres Gipfeltreffen der Vereinten Nationen in Brasilien angesetzt, dessen Titel Konferenz der Vereinten Nationen über nachhaltige Entwicklung lautet.

 So kann man eigentlich sagen: an Bemühungen und guten Absichten fehlt es nicht, das Problem ist jedoch die Umsetzung. Im Fortschrittsbericht der Bundesregierung zum Stand der Bemühungen um Nachhaltigkeit in Deutschland kann man nachlesen, dass wirtschaftliche Veränderungen weitgehend in die richtige Richtung gelaufen sind. Schon wesentlich ungünstiger sieht es mit den angestrebten Entwicklungen im sozialen Bereich aus. Die Umweltveränderungen sind zum großen Teil in die falsche Richtung gelaufen. Das gilt für die Entwicklung der Biodiversität ebenso wie für Landschaftsverbrauch und ressourcenschonende Landwirtschaft.

Vom Bericht kaum erfasst werden die Aktivitäten Deutschlands in globaler Hinsicht. Der Klimawandel, die Veränderungen der Weltmeere, insbesondere die Überfischung und die Verschmutzung, Bodenverluste durch Erosion, Ausdehnung der Wüstengebiete und auch und die immer weitergehenden Zurückdrängung naturnaher Wald-Ökosysteme haben sich in den letzten 10 Jahren nicht „nachhaltig entwickelt“. Was vor 300 Jahren in Mitteleuropa zum ersten Mal erkannt und dann in den folgenden Jahrhunderten auch einigermaßen umgesetzt wurde, wird bis heute auf tropische Regenwälder aber auch auf Urwälder der gemäßigten Zonen – etwa in Kanada oder in Südamerika – nicht angewandt. Angesichts des großen Holzbedarfes – insbesondere der Zellstoffindustrie -, des großen Flächenbedarfes der Futtermittel- und Biomasseproduzenten und dem damit stattfindenden „landgrapping“ werden nicht nur immer mehr naturnahe Waldflächen „verbraucht“, auch die Existenzgrundlagen der indigenen Bevölkerungen verschlechtern sich kontinuierlich. Die immer weiter steigenden Energiepreise lassen auch früher unwirtschaftliche und einer nachhalltigen Entwicklung besonders abträgliche Ausbeutungsformen wie die Gewinnung von Erdöl aus Ölschiefer (z. B. in Kanada) zum Probem werden.

Weltweit hat sich in den vergangenen zehn Jahren vor allem das Verkehrsaufkommen und der damit verbundene Verbrauch von fossilen Energieträgern  gesteigert. Die dafür benötigten Autos und die Flugzeuge werden zu einem deutlichen Prozentsatz auch in Deutschland produziert. Im übrigen ist auch in Deutschland das hohe Verkehrsaufkommen ein Umweltproblem. Der derzeitig hohe Benzinpreis kann deshalb eigentlich nur begrüßt werden. Allerdings sollten die daraus resultierenden Gewinne auch sinnvoll genutzt werden (dies gilt sowohl für die staatlichen Steuereinnahmen als auch für die Gewinne der Mineralölkonzerne).

In einem Artikel zum Fortschrittsbericht zur nationalen Nachhaltigkeitsstrategie (2012) schreibt die Bundesregierung:  „Nachhaltige Mobilität bedeutet vor allen, den Verkehr so zu organisieren, dass Beschäftigung, Wohlstand und persönliche Freiheit möglich sind und dass er sicher, sauber, ressourcenschonend, effizient und klimafreundlich, leise und bezahlbar ist.“ Das klingt sehr vernünftig – allein, es ist kaum zu erkennen, dass ernsthafte Absichten bestehen, diesen schönen Worten auch Taten folgen zu lassen.

Weitere Informationen der Bundesregierung zum Nachhaltigkeitsbericht und einen Zugang zum vollständigen über 300 seitigen Bericht findet man unter folgendem Link:

http://www.bundesregierung.de/Content/DE/Artikel/2012/02/2012-02-15-kabinett-fortschrittsbericht-2012.html;jsessionid=14E343D8C48FE64DD6FBBEDE0907DCAB.s1t1?nn=28588&__site=Nachhaltigkeit

Ein lesenswerter Bericht zur Wirkung der Nachhaltigkeitstrategie in Deutschland findet sich in der TAZ vom 17.4.2012.