Schlagwort-Archive: Moor

Verwilderung fördern

LINK-NAME LINK-NAME

Vom Menschen unberührte Natur macht derzeit weniger als ein Viertel der Erdoberfläche aus. Den Forderungen, solche Flächen zur Stabilisierung des Bioplaneten zu vergrößern, steht die wachsende Weltbevölkerung und die auf Wachstum begründete Weltwirtschaft entgegen. Gibt es trotzdem Möglichkeiten, natürliche Funktionsabläufe zu vermehren?

Wildnis und Naturschutz

Die vom Menschen noch kaum veränderten Gebiet der Erdoberfläche machen gegenwärtig weniger als ein Viertel aus. 77% der Landfläche (ohne Antarktika) und 87% der Meere sind bis heute durch menschliche Aktivitäten verändert worden, der größte Teil davon in den letzten 50 Jahren (Watson, Allen u.a. 2018). Dies wird von vielen Ökologen als ein großes Problem angesehen, denn vom Menschen bisher kaum beeinflussten Wildnis-Gebiete gelten als wichtigster Puffer gegen den Verlust der biologischen Vielfalt und die Klimaveränderungen. Wildnisgebiete regulieren Wasserkreisläufe und Klimazyklen und schützen damit vor extremen Wetterereignissen. Außerdem stellen sie wichtige Referenzflächen für die Regeneration und Renaturierung degradierter Landflächen und Meeresgebiete dar. Die Degradation und Fragmentaktion naturnaher Restflächen verstärken die nachteiligen Auswirkungen der Klimaerwärmung auf die Biodiversität (Mantyka-Pringle u. a. 2012).

Den Erhalt von Wildnis ist deshalb ein wichtiges Naturschutzziel.

Aber was ist Wildnis? Ist es im Sinne Aldo Leopolds von Menschen unberührte Natur? Oder sind mit domestizierten Rindern und Pferden beweidete „halboffene Weidelandschaften“ ebenso Wildnis, wie dies Jan Haft in seinem Buch „Wildnis“ darstellt? Welche Rolle spielt Wildnis für die Biodiversität, für den Klimaschutz und für den Erhalt natürlicher Ressourcen? Haben Aufforstungsprogramme etwas mit Wildnis zu tun? Inwiefern ist der Naturschutz mit Wildnis-Vorstellungen verknüpft?

Viele Fragen. Ein Versuch, sie zu beantworten, lässt schnell erkennen, dass es recht unterschiedliche menschliche Vorstellungen von „wilder Natur“ und den Beziehungen der Menschen zu solcher Wildnis gibt.

Europäische Wildnis?

Die in Mitteleuropa seit der letzten Kaltzeit in etwa 12 000 Jahren – also einer erdgeschichtlich sehr kurzen Zeitspanne – entstandenen Landschaften waren von Anfang an vom Menschen beeinflusst. Die menschliche Nutzung hat ein kleinräumiges Mosaik von Lebensräumen geschaffen und zu einer Artenvielfalt geführt, die sich vermutlich ohne den Menschen und seine Nutztiere nicht oder zumindest nicht so schnell entwickelt hätte.

Eine kleinräumig strukturierte Kulturlandschaft hat sich in Mitteleuropa bis heute in einigen Gebieten erhalten (Foto W. Probst 14.9.2012)

Ein flächendeckender Urwald, wie er über die Jahrhunderte heute vermutlich ohne menschlichen Einfluss in Mitteleuropa entstehen würde, hätte sicher eine geringere Artenvielfalt aufzuweisen als die ursprüngliche, vorindustrielle Kulturlandschaft. Der Biologe und Naturfilmer Jan Haft belegt dies in seinem Buch „Wildnis“ mit gut recherchierten Zahlen und Aussagen von Experten (Haft 2023). Es ist deshalb verständlich, dass Naturschutz in Mitteleuropa in vielen Fällen mit Managementmaßnahmen verbunden ist, bei denen es darum geht, traditionelle Landbewirtschaftungsmaßnahmen nachzuahmen. Schilfbestände in Feuchtgebieten werden abgemäht und das Mähgut gut wird entfernt um einen Zustand magerer Feuchtwiesen zu erreichen, der alten Streuwiesen entspricht. Heiden und Moore werden maschinell oder von Hand von Gehölzen befreit (entkusselt), um einen Zustand herzustellen, der einer extensiven Beweidung entspricht. Feldhecken, die früher auch der Nutzholzgewinnung dienten, werden als Naturschutzmaßnahme weiterhin regelmäßig „auf den Stock gesetzt“, um das Durchwachsen zu Baumreihen zu verhindern und den für Kleinsäuger, Vögel, Reptilien und viele Wirbellosen wertvollen Heckencharakter zu erhalten. Alle diese Maßnahmen zielen auf den Erhalt von Landschaften ab, die man nicht als „unberührte Natur“ bezeichnen kann.

In den zwischeneiszeitlichen Warmzeiten allerdings war die Biodiversität ebenfalls deutlich höher. Ursache waren vermutlich die zahlreichen großen Herbivoren, deren Weidetätigkeit die Bildung geschlossener Urwälder verhinderte. Vielmehr herrschten offene, savannenähnliche Landschaften , wie sie heute zum Beispiel noch in Afrika zu finden sind. Dass es solche großen Pflanzenfresser seit dem Ende der letzten Kaltzeit in Europa nicht mehr gibt, ist vermutlich auf die Tätigkeit menschlicher Jäger zurückzuführen ( Sandom et al. 2014). Streng genommen könnte man deshalb diese voreiszeitliche Landschaft als die eigentliche mitteleuropäische Wildnis ansehen.

Nordamerikanische Wilderness

In Nordamerika ist der Naturschutz deutlich stärker mit dem Wildnisbegriff im Sinne von unberührter Natur verbunden als in Europa. Der Naturalist und Dichter Henry David Thoureau forderte schon 1862, dass jede amerikanische Stadt zur Bildung und Erholung ihrer Bevölkerung 200-400 ha Wildnis so bewahren sollte, dass darin nicht einmal die Spur eines geschnittenen Stockes zu erkennen wäre (nach Trommer 2023). Auch für den großen amerikanischen Naturschützer John Muir war die wilde, von Menschen unberührte Natur der zu schützende Idealzustand. Ebenso setzte sich der Wildtierbiologe Aldo Leopold (1887-1948) für die Bewahrung von Wildnis als einem von Menschen weitestgehend unbeeinflusstem Naturraum ein. Seine Schriften hatten großen Einfluss auf den 1964 beschlossenen Wilderness Act, mit dem ein System von vollständig geschützten Wilderness Areas geschaffen wurde (Henderson o.J.).

Diese unterschiedlichen Vorstellungen von Naturschutz in Nordamerika und Europa hängen sicherlich auch damit zusammen, dass die Landschaftsveränderungen in Nordamerika im 18. und vor allem im 19. Jahrhundert in atemberaubender Geschwindigkeit verliefen und deshalb im Laufe eines Menschenlebens sehr gut zu beobachten waren. Die europäischen Siedler bewirkten eine sehr rasche und drastische Veränderung und verhinderten von vorneherein die Entwicklung einer europäischen Verhältnissen vergleichbaren kleinräumig strukturierten Kulturlandschaft.

Agrarlandschaft in Illinois (Foto W.Probst 1989)

Außerdem war der Ausgangszustand nach der Eiszeit in Nordamerika biodiverser als in Europa. In Nordamerika konnten sich die Biodiversität nach der letzten Eiszeit  schneller regenerieren als in Europa, da die Biozönosen während der Kaltzeiten wegen der vorwiegend von Norden nach Süden streichenden Gebirge nicht so stark dezimiert wurden.  In Mitteleuropas war eine Rückzugsmöglichkeit nach Süden durch die Alpen weitgehend versperrt.

Allerdings sind auch in Nordamerika viele der vor den Kaltzeiten oder in Zwischenwarmzeiten noch existenten großen Pflanzenfesser einschließlich ihrer Prädatoren verschwunden. Es ist naheliegend, zu vermuten, dass auch hier menschlicher Einfluss, die Jagd, für das Aussterben entscheidend war. Ähnliche Entwicklungen kann man auch für Australien und Teile Asiens nachweisen. Lediglich in Afrika haben bis heute eine Vielzahl großer Herbivoren und Carnivoren überlebt. Dies wird damit in Verbindung gebracht, dass sich in Afrika Menschen und Großsäuger über lange Zeiträume parallel entwickelt haben.

Welche Wildnis wollen wir?

Aus diesen Überlegungen wird deutlich, dass nicht so ganz eindeutig ist, was jeweils unter „Wildnis“ , also einem ursprünglichen Naturzustand, gemeint ist und welche günstigen Wirkungen auf eine nachhaltige Entwicklung des Bioplaneten Erde sich daraus ergeben. Geht es um einen Zustand ohne jeglichen menschlichen Einfluss, also um Ökosysteme ohne Homo sapiens oder gehören auch sogenannte Naturvölker dazu? Welche Rolle spielen reich strukturierte Kulturlandschaften, wie sie bis zu Beginn der Industrialisierung in Europa vorherrschend waren? Wie sind die Veränderungen – man kann auch sagen Ausrottungen – zu bewerten, die schon durch Jäger und Sammler bei der Besiedelung Australiens  und Amerikas bewirkt wurden? Wo zieht man die Grenzen? Ist es wirklich notwendig, völlig unberührte (menschenfreie) Natur zu erhalten, oder können menschliche Aktivitäten teilweise dazu führen, dass Funktionen im Naturgeschehen wieder ablaufen, die vormenschlichen Bedingungen entsprechen? Geht es also mehr um „wilde“ Funktionsabläufe als den Erhalt eines menschenfreien Zustandes?

Wilde Weiden

Heckrinder-Bulle im Leimbach-Hepbacher Ried bei Markdorf, Baden-Württemberg (Foto Probst 2011)

Jan Haft zielt in seinem Buch „Wildnis“ genau auf dieses Funktionsverständnis von Wildnis ab, das im Naturschutz auch als „Prozessschutz“ bezeichnet wird. Dabei geht es ihm vor allem um die Ökosysteme mit großen Pflanzenfressern, die in vielen Gebieten der Erde vor dem Erscheinen des Menschen große Räume einnahmen. Diese vorzeitliche Wildnis könnte funktional wiederhergestellt werden durch domestiziert Weidetiere, deren Populationen nicht durch Carnivoren sondern durch den Menschen reguliert werden. Die mittlerweile an vielen Orten etablierten „halboffenen Weidelandschaften“ sind ein gutes Beispiel dafür, dass solche wilde Weiden der Biodiversität wirklich sehr förderlich sind und dass in solchen Gebieten viele bedrohte Arten sich wieder ausbreiten und regenerieren konnten. Zwei sehr gut dokumentiertes Beispieleaus meiner früheren Heimat sind die auf einem ehemaligen Truppenübungsplatz der Bundeswehr entstandene Weidelandschaft „Stiftungsland Schäferhaus“ bei Flensburg und das Stiftungsland Winderatter See – Kielstau (Janßen 2011-2020)

Das Prinzip dieser Art von Verwilderung lässt sich auf andere Bereiche ausweiten. Einige Beispiele:

Aufforstung

Bäume pflanzen und durch Trockenheit und Schädlingsbefall – vor allem Windbruch und Borkenkäfer –  geschädigte oder zusammengebrochenen Wälder durch Aufforstung zu regenerieren gilt nicht nur als eine wichtige Maßnahme des Klimaschutzes sondern auch des Naturschutzes und der Förderung der Biodiversität. Dem widerspricht zum Beispiel der Förster und Erfolgsautor Peter Wohlleben: „Wald kommt von ganz alleine zurück, das macht er seit 300 Millionen Jahren.“ Global gäbe es kein Beispiel dafür, dass gepflanzter Wald besser funktioniert, als ein Wald, der von selbst zurück wächst. Besonders widerspricht Wohlleben der Annahme, Bäumepflanzen sei eine unumstrittene Klimaschutzmaßnahme. Eine frisch gepflanzte Aufforstung stoße in den ersten Jahren bis Jahrzehnten mehr CO2 aus, als die neu gepflanzten Bäume aufnehmen könnten (Wohlleben in“Hart aber fair“ , 01.11.21).

Erfahrungen im Nationalpark Bayerischer Wald geben Wohllebens Auffassung recht. Nachdem in den 1990 er Jahren durch Borkenkäferbefall rund 60.000 ha Wald zugrunde gegangen waren, hielt die Nationalparkverwaltung trotz großer Proteste der Öffentlichkeit an ihrer Nichteingriffsstrategie fest. Die sich hervorragend regenerierenden Bergwaldflächen sind mittlerweile ein international bekanntes Beispiel für natürliche Waldregeneration (Bibelriether 2017).

Ackerbau

Die hohe Biodiversität einer kleinräumig strukturierten Kulturlandschaft, wie sie in früheren Jahrhunderten für Mitteleuropa typisch war, ist unbestritten. Viele hiesige Naturschutzmaßnahmen zielen deshalb darauf ab, alte bäuerliche Bewirtschaftungsformen zu simulieren. Dies geht aber nur auf verhältnismäßig kleinen, abgeschlossenen Naturschutzflächen. Großflächig dominieren weiterhin große, unstrukturierte Ackerflächen, da nur solche mit Großmaschinen rationell bearbeitet werden können. Wäre es nicht denkbar, dass eine zunehmende Digitalisierung der Landwirtschaft auch eine rationelle maschinelle Bearbeitung kleinräumig strukturierte Anbauflächen ermöglichen würde? Statt dinosaurierartiger Riesenmaschinen könnten kleine Agrarroboter Bearbeitung und Ernte übernehmen, die von Satelliten oder Drohnen gesteuert ganz gezielt eingesetzt werden könnten. Sie würden sich an einem verhältnismäßig engmaschigen Netz von Feldhecken und Feldgehölzen, Randstreifen und Saumbiotopen nicht stören. So könnte eine kostengünstige Produktion ermöglicht werden, ohne natürliche Funktionsabläufe vollkommen zu unterbinden.

Auch die arbeitsintensiven Methoden der Permamakulturen und der Agroforestry, die versuchen, natürliche Prozesse nicht zu unterdrücken sondern auszunutzen, könnten durch KI-Einsatz rentabler werden.

Landwirtschaft, die natürliche Funktionsabläufe zulässt (Grafik W. Probst)

KI in der Landwirtschaft

Der nächste Schritt in der technologischen Entwicklung intelligenter landwirtschaftlicher Maschinen könnte eine Art Schweizer Armeemesser sein: ein Roboter, der jede Pflanze individuell behandelt, nicht nur mit Herbiziden sondern auch mit angepassten Düngemitteln, Insektiziden und Fungiziden und gezielter Bewässerung, alles in einem Arbeitsgang und jeweils nur in der benötigten Menge. Die Folgen einer solchen. Behandlung von Einzelpflanzen statt von ganzen Feldern bedeutet nicht nur eine deutliche Reduktion benötigter Chemikalien und anderer Ressourcen. Es könnte schließlich auch zu einem Ende der Monokulturen führen, einem Ende von Kornfeldern oder Sojafeldern soweit das Auge reicht, die heute der Normalfall sind. Monokulturen laugen Böden aus und sind riskant, da solche nur von einer Pflanzenart bewachsene Felder für Schädlingsbefall und andere Katastrophen besonders anfällig sind.“ (Übersetzt aus Little, A. (2019): The fate of food. What we’ll eat in a bigger,hotter,smarter World. London: Oneworld Publications, p.106)

Paludikultur

Bis vor 200 Jahren waren Torfmoore die letzten unberührten Naturlandschaften Mitteleuropas. Durch Entwässerung und Bodenbearbeitung, Torfstich zur Brennmaterialgewinnung und später für Blumenerde und Gärtnereibedarf führten zum weitgehenden Verschwinden ursprünglicher Moore mit aktiver Torfbildung. Im Zuge der Klimaerhitzung hat man festgestellt, dass die Torfbildung unter Mooren eine sehr effektive Form der Kohlenstoffspeicherung darstellt. Deshalb werden seit einiger Zeit große Anstrengungen unternommen, um aktive Moore zu regenerieren. Dies muss aber nicht unbedingt zur Herstellung des ursprünglichen Zustandes führen. Eine Alternative sind die sogenannten Paludikulturen, bei denen auf wieder vernässten Torfböden nutzbare Pflanzenproduktion betrieben wird. Geerntet werden können nicht nur Schilf und Sauergräser sondern auch Torfmoose, aus denen ein für Gärtnereizwecke besonders wertvolles, dem Hochmoortorf entsprechendes Grundsubstrat gewonnen werden kann. Die Kohlenstoff-speichernden Torfschichten bleiben erhalten. Auch weitere ökologische Funktionen wie Regulierung des Wasserhaushaltes und Erhalt von Lebensräumen für moortypische Tiere und Pflanzen blieben – zumindest teilweise – erhalten (Tanneberger, Schroeder 2023)

Migration

Arten, die sich in einem Gebiet ausgebreitet und etabliert haben, in dem sie zuvor nicht heimisch waren, nennt man Neobiota (auch Neobionten, Sing. der Neobiont). Enger gefasst versteht man darunter nur solche Arten, für deren Einbürgerung indirekt oder direkt menschliche Aktivitäten verantwortlich waren. Arten, die sich ohne menschlichen Einfluss ausgebreitet haben, werden dann als Neueinheimische (Neonative) bezeichnet. Besonders wichtig für Neobiota im engeren Sinne ist der weltweite Güterverkehr.

Nach einer Recherche von Kleunen et al. 2015 wurden bs dahin weltweit 13.168 Pflanzenarten durch menschliche Aktivitäten in neuen Gebieten eingebürgert. Besonders neobiontenreich ist Nordamerika, die größte Anzahl der weltweit neu eingebürgerten Arten stammt aus Europa. Beides hängt vermutlich direkt mit der Kolonisation zusammen, die von Europa ausging.

Vom Naturschutz wird diese menschenbedingte Migration zumeist als großes Problem angesehen, da neu eingewanderte Arten etablierte, heimische Arten verdrängen und Ökosysteme verändern können. Der Naturschutz versucht deshalb, diese Migration zu verhindern und die Migranten wenn möglich wieder aus den neu eroberten Gebieten zu verdrängen. Tatsächlich haben Neobiota teilweise zu drastischen Veränderungen der ursprünglichen Ökosysteme beigetragen. Dies gilt besonders für pazifische Inseln, die von europäischen Kolonisatoren nicht nur mit landwirtschaftlichen Nutzpflanzen und Nutztieren (Schweine, Ziegen) sondern auch mit Ratten und europäischen Wildpflanzen von Äckern und Weiden „geimpft“ wurden. Die sehr speziellen Ökosysteme hatten solchen im wahrsten Sinne des Wortes invasiven Arten nichts oder wenig entgegenzusetzen und viele auf den Inseln endemisch Arten wurden ausgerottet.

Andererseits ist Migration ein sehr natürlicher Vorgang, der für die Geschichte des Lebens auf der Erde eine entscheidende Rolle gespielt hat. Mancuso (2021) bezeichnet Migration nicht ganz zu Unrecht sogar als „Essenz des Lebens“. Allen Lebewesen, so Mancuso, sei ein „Wandertrieb“ eigen, das Bestreben, sich möglichst effektiv auszubreiten, das Verbreitungsareal zu vergrößern. Durch solche Wanderungen bedingte Veränderungen wären für die Entwicklung des Lebens auf unserem Planeten – nicht zuletzt auch für die Evolution des Menschen – von großer Bedeutung. Vom Menschen geförderte oder verursachte Migration ist nicht etwas grundsätzlich anderes als natürliche Migration, allerdings kann vom Menschen geförderte Ausbreitung natürliche Ausbreitungsschranken schneller überwinden und auch große Entfernungen können durch moderne Verkehrsmittel schnell überbrückt werden.

Um den Artenbestand von Inseln zu erklären, haben  MacArthur und Edward O. Wilson 1967 die mittlerweile breit akzeptierte Gleichgewichtstheorie der Inselbesiedelung entwickelt. Danach stellt sich – qualitativ leicht zu beschreiben – auf jeder Insel ein Gleichgewicht zwischen Einwanderungsrate und Aussterberate der Arten ein. Je mehr Arten auf einer Insel vorhanden sind, desto geringer ist die Einwanderungsrate. Entweder, da keine Arten zur Einwanderung mehr zur Verfügung stehen, oder, da es keinen Platz mehr für die neu zugekommenen Arten gibt, da also keine „Nischenbildung“ mehr für sie möglich ist. Umgekehrt ist die Aussterberate umso größer, je mehr Arten auf der Insel sind. Steht  genügend Zeit zur Verfügung, stellt sich ein Gleichgewicht ein, eine bestimmte Artenanzahl. Die Zusammensetzung der Arten, das Artenspektrum, kann sich oder muss sich allerdings weiter ändern, da ja immer Arten aussterben und Arten einwandern, jeweils in einer Rate, die dem Gleichgewicht entspricht. Ohne Migration würde die Artenanzahl auf Inseln danach kontinuierlich abnehmen. Dies gilt aber natürlich auch für andere mehr oder weniger abgeschlossene Gebiete und vermutlich sogar für ganze Kontinente.

Die meisten Neobiota haben sich gut in die Ökosysteme integriert, ohne dass nachteilige ökologische Auswirkungen erkennbar wären. Eine gezielte Bekämpfung ist deshalb in den meisten Fällen nicht notwendig und – wenn sich die Arten schon weit verbreitet haben – auch wenig erfolgversprechend. Die Ausbreitung und Etablierung von Neobiota kann bei sich veränderndem Klima sogar eine Stabilisierung von Ökosystemen bedeuten. Auch das Bundesamt für Naturschutz empfiehlt deshalb eine weitgehende Akzeptanz der Neubürger und eine Bekämpfung nur in begründeten Einzelfällen.

Verkehr

Die Hauptprobleme, die sich durch privaten und öffentlichen Verkehr ergeben, sind die Zerschneidung der Landschaft und die Produktion schädlicher Abgase. Das zweitgenannte Problem versucht man durch „grüne Energie“ und Abschaffung von Verbrennungsmotoren zu beheben. Das erste Problem ist für die natürliche Funktionsabläufe in einer Landschaft besonders gravierend. Es könnte zum Teil dadurch behoben werden, dass die Zerschneidungseffekte von Verkehrswegen durch grüne Brücken vermindert werden, noch effektiver durch großzügigen Brücken- und Tunnelbau. Dabei spielt die fachgerechte Ausführung und Unterhaltung der Grünverbindungen eine entscheidende Rolle (Peters-Ostenberg, Henneberg 2023).

Auch durch Alleen kann der schädliche Zerschneidungseffekt von Verkehrswegen gemindert werden. Außer ihrer Bedeutung als vernetzendes Element stellen sie selbst vielseitige Lebensräume dar.

Städte und Siedlungen

Zwischen 1985 und 2015 hat die die Ausdehnung von Städten und Siedlungen jährlich um 9687 km² zugenommen, mit steigender Tendenz (Liu et al. 2020). Damit ist der Flächenverbrauch der Städte schneller gewachsen als die Bevölkerung. Für eine nachhaltige Entwicklung müssen Städte deshalb „ökologischer“ werden. Damit ist gemeint, dass Funktionsabläufe in dem Ökosystem Stadt stärker den Funktionsabläufen in einem natürlichen Ökosystem entsprechen sollen. Eine Stadt mit großen Grünanlagen wie Parks und Gärten bietet zwar eine hohe Lebensqualität und eine bessere Ökobilanz. Dies geht aber insofern auf Kosten der Umgebung, als sie mehr Fläche für denselben umbauten Raum benötigt. Eine Erfolg versprechende Möglichkeit für dicht bebaute Großstädte ist die Integration von Bauwerken und Grünanlagen.

Neben Minderung des Klimawandels durch eine Verbesserung der CO2-Bilanz können dadurch auch die Auswirkungen einer Klimaerwärmung verringert werden (Lass u. a. 2022). Schließlich wirken mit Sachverstand begrünte Städte auch dem Verlust der Biodiversität entgegen.

Dächer

Schon lange zählt es zu Attributen ökologischer Bauweise, Dächer zu begrünen. Die Etablierung und Ausgestaltung solcher Dachgärten und Wiesen ist aber noch sehr stark ausbaufähig, wie man auf Luftbildern von Städten leicht erkennen kann. Begrünte Dächer können durch Brücken vernetzt werden. Durch treppenartige Anordnung von Gebäudeteilen können Verbindungen zur Grundfläche hergestellt werden. Beim Bewuchs selbst könnte dem Prinzip „Wachsen lassen“ mehr Raum gegeben werden.

Vernetzung von begrünten Dächern (Grafik W.Probst)

Fassaden

Auch begrünte Fassaden gibt es schon lange, aber eher an alten Bauernhäuser auf dem Land als an mehrgeschossigen Stadthäusern, Bankhochhäusern und Industrieanlagen. Außerdem sind die bisher architektonisch verwirklichten Grünfassaden gärtnerisch aufwändige Konstruktion, die eine hohe Wartung benötigen. Ziel müsste es sein, möglichst wartungsarme sich selbsterhaltende Systeme zu erzeugen.

Eine Möglichkeit für eine schnelle flächenhafte Begrünung wären Module, die mit einfachen Mitteln an Fassaden angebracht werden können und die durch Anschluss an eine Bewässerungsanlage wartungsarm sind. Die Elemente könnten aus einem Gerüst bestehen, an dem mehrere auswechselbare Pflanzgefäße aufgehängt werden. Fensterfassaden könnten  durch berankte Schnurgerüste – Hopfenfeldern vergleichbar – begrünt und beschattet werden.

Fassadenbegrünung mit vorgefertigten Modulen (Grafik W. Probst)

Ein interessanter Vorschlag sind vorbegrünte Pflanzennetze. Solche „Urban Pergolas“ sollen als Verschattungssystem der Aufheizung von Fassaden entgegenwirken und die Städte in einen „diversen Großstadtdschungel“ verwandeln. Die Pflanzennetze können an einem oder zwischen mehreren Gebäuden angebracht werden und dadurch Grünflächen schaffen, ohne andere Nutzungen den Platz wegzunehmen (Urban Pergola 2021).

Balkone

Eine weitere Möglichkeit der vertikalen Begrünung, die in wenigen Beispielen schon verwirklicht ist, wäre die Ausgestaltung von Pflanzbalkonen mit Sträuchern und Bäumen (Boeri 2015).

Hochhäuser als Gewächshäuser, „Vertical Farming“

Diese platzsparende Form der Landwirtschaft setzt einen preisgünstigen Zugang zu alternativen Energien voraus, wird aber heute schon als eine wichtige, nachhaltige und zukunftsfähige Ergänzung zur Flächen gebundenen Landwirtschaft gesehen:

Die Fluggesellschaft Emirates Airline plant deshalb die größte Vertical Farm der Welt neben dem Flughafen von Dubai. Singapur plant schwimmende Vertical Farms.

Wenn es in der Zukunft gelingt, den Kraftfahrzeugverkehr weitgehend aus den Stadtzentren herauszuhalten, werden dort auch keine Parkhäuser mehr benötigt und diese könnten zu „Plantscrapern“ werden (Despommier 2011).

Ritzen und Fugen

Der portugiesische Stadtplaner und Architekt Ángel Panero Pardo stellte auf dem großen Platz vor der Wallfahrtskathedrale von Santiago de Compostela während der Corona Pandemie fest, dass sich dieser Platz nach dem Ausbleiben der Pilger in ein Biotop für Wildkräuter verwandelt hatte. Die Fugen zwischen den Pflastersteinen waren grün. Der Stadtplaner überlegte, dass dieser zusätzliche Pflanzenwuchs sich eventuell positiv auf das Stadtklima auswirken könnte. Die Botaniker der Universität von Santiago de Compostela wurde mit einer Untersuchung beauftragt und sie stellten mit einer Wärmebildkamera fest, dass die bewachsenen Ritzen eine bis zu 28 °C niedrigere Oberflächen-temperatur aus aufwiesen als die Steine (Prinz 2023).

Dieses Ergebnis fand in den Medien einen breiten Widerhall, obwohl es eigentlich nicht so verwunderlich ist. Wenn man Fugen und Ritzen in Pflastern und Mauern nicht länger von jedem Bewuchs frei hält, sondern Bewuchs zulässt, hat dies einen messbar positiven Einfluss auf das Stadtklima.

Gehsteigkante mit Acker-Winde, Oberteuringen, 27.7.2016 (Foto W. Probst)

Gärten

Ein besonders großes Potenzial stellen Privatgärten dar, die vor allem in den Randbereichen der Städte in  Vierteln mit Einfamilien- und Reihenhäusern konzentriert sind. Hier gilt meist das Prinzip, dass nur wachsen darf, was gepflanzt wurde. Der Garten darf nicht „verwildern“. „Un“kraut jäten ist deshalb  neben Rasen mähen und Hecken schneiden die häufigste Beschäftigung des Hobbygärtners. Um das Unkraut ohne zu viel manuelle Tätigkeit fern zu halten, hat sich schon vor einigen Jahrzehnten verbreitet, die Beete mit einer Schicht aus keimungs- und wachstumshemmendem Rindenmulch zu bedecken.Seit einigen Jahren wird eine noch pflanzenfeindlichere Methode, das Auskiesen von Gartenflächen, immer beliebter.

Dabei gibt es viele Möglichkeiten, natürliche Funktionsabläufe im Garten zuzulassen oder sogar zu fördern und so eine „Verwilderung“ zu ermöglichen, die durchaus ästhetischen Ansprüchen gerecht werden kann:

  • Zierpflanzen, die gut gedeihen, fördern, auf solche, die schlecht wachsen oder sehr viel Pflege benötigen, verzichten,
  • auf Pestizide verzichten oder sie nur sehr gezielt bei einzelnen befallenen Pflanzen einsetzen,
  • Wildpflanzen nur entfernen, wenn sie gewünschte Zier- oder Nutzpflanzen schädigen oder verdrängen,
  • Wildpfanzen unter Hecken oder Sträuchern wachsen lassen,
  • Rasenflächen, die rein ornamentale Funktion haben, zu mageren (nicht gedüngten), höchstens zweimal im Jahr gemähten Wiesen umwandeln,
  • Abstellflächen (z.B. Autostellplätze) nicht pflastern oder asphaltieren, sondern als Schotterrasen gestalten,
  • Einfahrten mit unterbrochenen Pflastersteinen befestigen, die Bewuchs und Wasserversickerung ermöglichen,
  • abgeblühte Blütenstände und abgestorbene  Fruchtstände wenigstens teilweise stehen lassen, auch über Herbst und Winter (Vogelfutter, Überwinterungsplätze für Insekten)
  • Gartenabfälle vor Ort kompostieren,
  • aus Strauch- und Baumschnitt Reisighaufen anlegen,
  • Gartenmauern als Trockenmauern anlegen, Mauerritzen können zur schnelleren Begrünung mit passenden Pflanzen geimpft werden (Zimbelkraut, Mauerraute, Schöllkraut, Polster von Mauermoosen wie Drehzahnmoos, Kissenmoos)
  • Abwechslungsreiche Besiedelungsflächen schaffen (Sandflächen, Lehmböden, humusreiche Böden, Stein- bzw. Bauschutthaufen),
  • Regenwasser vom Dach (und versiegelten Flächen) in Zisterne sammeln und als Gießwasser (ggf. auch für Teich /Bachlauf) nutzen.

Städte mit grünem Pelz

Ergänzend zu den genannten Maßnahmen können Verkehrswege, insbesondere Straßen und Schienenverkehr, wie U-Bahnen unter die Oberfläche verlegt werden, wodurch Platz für bodenständige Grünanlagen aber auch Rad- und Fußwege gewonnen würde.

So könnten schließlich Städte entstehen, die ganz in einem grünen Pelz eingehüllt sind und die sich fast übergangslos in die umgebende Landschaft einfügen (vgl. Jean Nouvel 2014, Boeri 2015).

Verwilderung zulassen                               

Ein Garten, in dem verhältnismäßig wenig pflegerische Eingriffe vorgenommen werden, „verwildert“. Diese Art von Verwilderung ergibt sich aus natürlichen Funktionsabläufe, die nicht durch menschliche Eingriffe unterbrochen werden. Wenn man sich bei allen Eingriffen und Pflegemaßnahmen – Manipulationen der Natur – überlegt,  welche Ziele mit Ihnen verfolgt werden sollen und ob diese Ziele notwendig und sinnvoll sind, wird man schnell erkennen, dass man auf viele Eingriffe verzichten könnte. Ein solcher Verzicht ist ein Schritt in Richtung Wildnis, wenn man unter Wildnis Vewilderung, das Zulassen natürlicher Prozesse, versteht.

Verwilderter Apfelgarten bei Flensburg (Foto U.Niss)

Quellen

Bibelriether, H. (2017): Natur Natur sein lassen. Die Entstehung des ersten Nationalparks Deutschlands: Der Nationalpark Bayerischer Wald. Freyung: Lichtland

Blanc.P. (2009): Vertikale Gärten, Die Natur in der Stadt. Stuttgart: Ulmer

Boeri, S. (2015): A vertical Forest. Milano: Editione Mantova

Bundesamt für Naturschutz: Neobiota – Gebietsfremde und  invasive Arten in Deutschland. https://neobiota.bfn.de/

Crutzen, P. J. (2002): Geology of mankind. Nature 415, p.23

Daily, G. C. (2001): Ecological forecast. Nature 411, p.245

Despommier, D. (2011): The vertical  farm: Feeding the world in the 21th century. Picador (Nachdruck der Ausgabe von 2010)

Fløjgaard, C. et al. (2021): Exploring a natural baseline for large-herbivore biomass in ecological restoration

Haft, J. (2023): Wildnis: Unser Traum von unberührter Natur (German Edition) (S.141). Penguin Verlag. Kindle-Version.

Hendersen, D. (o. J.): American Wilderness Philosophy. In: Internet Encyclopedia of Philosophy (IEP)  http://www.iep.utm.edu/am-wild/ 

http://eh-da-flaechen.de/

Hupke, K.-D. (2015):: Naturschutz. Ein kritischer Ansatz. Heidelberg: Springer Spektrum

Janßen,W. (2011-2020): Jahresberichte des Fördervereins für Natur und Umwelt Winderatter See – Kielstau. https://winderattersee-kielstau.de/?page_id=236

Kleunen, M. van et al. (2015): Global exchange and accumulation of non nativ plants. Nature 525, pp. 100–103

Lass, W., Reusswig, F, Walther, C.; Niebuhr, D.; Schürheck, T. Grewe, H. A. (2022): Hitzeaktionsplan für das Land Brandenburg (HAP BB). Gutachten, 20.9.22, Potsdam.

Liu, Xiaoping et al. (2020): High spatiotemporal resolution mapping of global urban change from 1985 to 2015: Nature Sustainability 3, pp.564-570.

Mantyka-Pringle, C. S., Martin, T. G., Rhodes, J. R. (2012): Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, pp. 1239-1252

MacArthur, R. H., Wilson, E. O (1967): The Theory of Island Biogeography. Princeton: University Press

Mancuso, S. (2021): Die Pflanzen und ihre Rechte. Eine Charta zur Erhaltung unserer Natur. Stuttgart: Klett-Cotta

Mrasek, V. (2019): Kann Aufforstung das Klima retten? Deutschlandfunk 5.11.2019 https://www.deutschlandfunk.de/waldwunschdenken-kann-aufforstung-das-klima-retten-100.html

Nickel et al. (2016): Außerordentliche Erfolge des zoologischen Artenschutzes durch extensive Ganzjahresbeweidung mit Rindern und Pferden: Ergebnisse zweier Pilotstudien an Zikaden in Thüringen, mit weiteren Ergebnissen zu Vögeln, Reptilien und Amphibien. Landschaftspflege und Naturschutz in Thüringen, 53, S. 5 – 20

Peters-Ostenberg, E., Henneberg, M. (2023): Zerschneidug – Entschneidung – Brücken bauen. In: : Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 87-96

Perino, A. et al. (2019): Rewilding complex ecosystems. Science 364 https://science.sciencemag.org/content/sci/364/6438/eaav5570.full.pdf

Prinz, U. (2023): Mit Superkräutern gegen den Hitzestress.  https://www.spektrum.de/news/bewachsene-fugen-superunkraeuter-gegen-hitzestress/2142636#

Probst, W. (2020): Der grüne Pelz. https://www.wilfried-probst.de//der-gruene-pelz/

Probst, W. (2021): Naturschutz auf neuen Wegen. Unterricht Biologie 465 (Jg.45). Hannover: Friedrich

Probst, W., Hrsg. (2017): Saumbiotope – Grenzen und Übergänge. UB 425. Seelze: Friedrich

Probst, W. (2017): Wachsen lassen – Naturschutz an Rändern, Säumen und Kanten. https://www.wilfried-probst.de//wachsen-lassen-naturschutz-an-raendern-saeumen-und-kanten/

Prominski, M., Maaß, M., Funke, L. (2014): Urbane Natur gestalten. Basel: Birkhäuser

Randers, J. (2012).: 2052 – eine globale Prognose für die nächsten 40 Jahre. München: Oekom , Ausblick 7-4

Redford, K. H. (2017):  The role of Synthetic Biology in conserving the new nature https://reefresilience.org/de/assisted-evolution-a-novel-tool-to-overcome-the-conservation-crisis-2/

Sandom, C. J. et al. (2014): High herbivore density associated with vegetation diversity in interglacial ecosystems. In: Proceedings of the National Academy of Sciences of the United States of America, 111, 11, S. 4162 – 4167

Schilk,, D. (2019): Die Wiederbegrünung der Welt. Klein Jasedow: Drachen-Verlag

Tanneberger, F., Schroeder, V. (2023): Das Moor. München: dtv

Trommer, G. (2023): Der wilde Rest. In: Riedel, W. (Hrsg., 2023): Zwischen Wildnis und Energielandschaft. Husum, S. 195-218

Van Kolfschoten, T. (2000): The Eemian mammal fauna of central Europe. Netherlands Journal of Geosciences 79, 2,3, S. 269 – 281

Watson, J. E. M., Allen, J. A. u. a.: (2018): Protect the last of the wild. Nature 563, pp. 27-30

Weinzierl, H. (2007): Einführung zum Fachsymposium „Mehr Wildnis, die Zeit ist reif“. S. 6-8 in: Deutscher Naturschutzring (Hrsg.): Mehr Wildnis, die Zeit ist reif. Fachsymposium. Bonn

Wohlleben, P. (2013): Der Wald –ein Nachruf. München: Ludwig

Exkursionsangebot für die PH Weingarten im Sommersemester 2021

LINK-NAME LINK-NAME

Liebe Exkursionteilnehmer*innen,

auf dieser Seite findet ihr alle wichtigen Informationen zum Exkursionsangebot im Rahmen der Veranstaltung „Regionale außerschulische Lernorte Oberschwabens“.

In der folgenden Übersicht haben wir die geplanten Exkursionsorte und -zeiten angegeben. Sollten einige Teilnehmer*innen auf öffentliche Verkehrsmittel angewiesen sein, müssen wir die Exkursionsziele eventuell ändern. Dies werden wir auf der ersten Veranstaltung in Oberteuringen klären.

Ausrüstung: Außer einer exkursionsgerechten Kleidung

  • Schreibzeug und Notizbuch
  • Mobiltelefon mit Fotofunktion,
  • Botanikerlupe und Fernglas
  • Behälter (Stofftasche oder Plastikbeutel; kleine Sammelbehälter ) zum Unterbringen von Sammlungsstücken
  • eventuell eine Sitzunterlage für Pausen im Gelände

Studienleistungen: Portfolio zu den Exkursionen, in dem zu jeder Exkursion mindestens zwei Objekte, Themen, Aktivitäten … beschrieben und kommentiert werden. Bei den Objekten können auch Scans oder Fotos verwendet werden, sodass auch ein digitales Portfolio möglich ist.

Artenkenntnis : Wichtiges Ziel der Exkursionen ist die Verbesserung der Artenkenntnis. Deshalb werden auf jeder Exkursion von zwei Teilnehmenden alle angesprochenen Arten notiert. Sie werden anschließend auf dieser Homepage veröffentlicht.

Kommentare und Fragen sind erwünscht, während den Exkursionen, als Kommentar auf dieser Seite oder per E-Mail. Wenn sie Pflanzen- oder Tierarten betreffen, ist ein beigefügtes Foto hilfreich.

Die erste Veranstaltung findet am 8. Mai in Oberteuringen statt. Von Weingarten/Ravensburg aus ist der Ort über die B 33 (Richtung Meersburg) zu erreichen. Außerdem gibt es eine Busverbindung von Ravensburg nach Oberteuringen, die ihr unter folgender URL finden könnt:

https://www.rome2rio.com/de/map/Ravensburg/Oberteuringen

https://www.rome2rio.com/de/map/Oberteuringen/Ravensburg

Auf die Exkursionen freuen sich Sabrina Brendle und Wilfried Probst.

Übersicht über die Exkursionsorte und -termine

Exkursionsorte, geändert am 8.5.2021
ZeitTreffpunktThemen
8.5.21 13.30-17.30hOberteuringen, Franz-Roth-PlatzBaumgeschichten; Bestimmungsschlüssel; Suchen und Finden; Kletterpflanzen; Wiese
15.5.21 10.00-14.00  Weingarten, FreibadNatur wahrnehmen und erleben
29.5.21 13.30-17.30hOberteuringen, NSG Altweiherwiese*Landschaftsgeschichte; Gräser; Zeigerwerte von Pflanzen; Saumbiotope; Biber
12.6.21 10.00-1400h    Völlkofen, GrillhütteWildkräuter und ihre Verwendung
3.7.21 13.30-17.30hWilhelmsdorf, NaturschutzzentrumInsekten, Landschaftsgeschichte:Hoch- und Niedermoor
24.7.21 18.30-22.30hWilhelmsdorf, NaturschutzzentrumFledermäuse
* geändert am 8.5.2021

8. Mai 2021 Oberteuringen

Anfahrt zum Treffpunkt in Oberteuringen, Franz-Roth-Platz

1. Von Ravensburg auf der B 33 Richtung Meersburg bis Oberteuringen, Ortsteil Hefigkofen und weiter bis Ortsteil Neuhaus.

2. In Neuhaus an der ersten Kreuzung  links in die Teuringer Straße abbiegen.

3. Der Straße bis zum Ortsschild „Oberteuringen“und bis zur 30iger Zone folgen, dann erste Abzweigung  links zum Parkplatz  „Franz-Roth-Platz“ abbiegen.

Vorlagen: Google maps

Oberteuringen

Foto W.Probst

Oberteuringen  ist ein Beispiel für die lange Besiedelungsgeschichte Oberschwabens und des Bodenseegebietes. Die älteste Urkunde, welche die Existenz der Siedlung Teuringen belegt, stammt aus dem Jahre 752. Dabei handelt es sich um einen Beleg für die Schenkung Teuringens und einiger anderer Siedlungen an das Kloster St. Gallen. Eine solche lange Geschichte ist durchaus charakteristisch für Ortschaften deren Namen mit – ingen endet. Dabei handelt es sich um alemannische Siedlungen die vermutlich im fünften und sechsten Jahrhundert gegründet wurden und mit denen die intensivere landwirtschaftliche Bewirtschaftung Oberschwabens begann. Diese lange Siedlungsgeschichte war landschaftsprägend. Rund um die vielen kleinen Ortschaften, Weiler und Einzelhöfe ist eine reich strukturierte Landschaft entstanden. Große zusammenhängende Waldgebiete sind selten, auch die landwirtschaftlichen Flächen sind meist kleiner strukturiert. Erst die Industrialisierung in jüngerer und jüngster Zeit hat viele Ortschaften durch Gewerbegebiete und neue Wohngebiete sehr anwachsen lassen. Das gilt auch für Oberteuringen, das mittlerweile über 5000 Einwohner zählt und gerade neue Bebauungspläne aufstellt.

Ein Grund dafür, dass der erste außerschulische Lernort  unserer Exkursionen ein solcher aus biologischer Sicht eher durchschnittlich erscheinender Ort Oberschwabens ist und nicht ein spektakuläres Naturschutzgebiet wie der Federsee oder das Wurzacher Ried, liegt daran, dass wir zeigen wollen, dass ergiebige außerschulische Lernorte eigentlich überall zu finden sind, ein zweiter, dass ich seit 14 Jahren in Oberteuringen wohne.

Literatur: Sanktjohanser, G. K. -Hrsg. (2002): Obeteuringen – Ein Streifzug durch die Jahrhunderte. Gemeinde Oberteuringen

Rotach bei Oberteuringen (Foto W. Probst)

Oberteuringen liegt an der Rotach, etwa in der Mitte ihres knapp 40 km langen Laufes über etwa 225 Höhenmeter vom Pfrunger-Burgweiler Ried bis zum Bodensee bei Friedrichhafen. Nach Argen und Schussen ist die Rotach der dritte größere Zulauf in den nordöstlichen Bodensee. Dieser kleine Fluss macht in Oberteuringen einen durchaus naturnahen Eindruck, der aber vor allem Renaturierungsmaßnahmen zu verdanken ist. Ursprünglich standen an der Rotach 22 Mahl- und Sägemühlen, die Oberteuringer Mühle beherbergt mittlerweile das Teuringer Kulturzentrum. Das Betreiben dieser Mühlen erforderte viele wasserbauliche Maßnahmen mit Stauwehren und Kanälen, die den natürlichen Bachlauf stark veränderten.

Gefälle der Rotach (aus Wikipedia)

Besondere Bäume am Sankt Martinsplatz

Der heutige Kirchenbau Sankt Martinus stammt aus der Zeit 1516/1517, der Ort war aber schon lange vorher der Standplatz einer christlichen Kirche. 1846 erhielt der Kirchturm seine heutige weithin sichtbare, über 60 m hohe Spitze. Der Platz zwischen Kirche und Rathaus, der Sankt Martinsplatz, ist das Zentrum Oberteuringens.

Unser Interesse galt vier besonderen Baumarten am Sankt Martinsplatz. Jeweils eine Gruppe beschäftigte sich kurze Zeit mit einer der Arten und versuchte, sie in einer möglichst kurzen Form eindeutig zu charakterisieren. Zwei „ahnungslose“ hielten sich während dessen außer Sichtweite auf. Dann versammelten sich alle vor dem Rathaus und die Gruppen charakterisierten ihren Baum. Alle vier Bäume wurden – es war zugegebenermaßen nicht sehr schwierig – sofort erkannt.

Gewöhnlicher Trompetenbaum (Catalpa bignonioides)

Trompetenbaum am 8.5.2021, Foto A.Winter
Trompeebaum im Juni, Foto W. Probst

Weitere Namen: Zigarrenbaum, Bohnenbaum; der Name ist aus der Sprache der Cherokee übernommen und bedeutet „Bohnenbaum“.

Heimat: Südosten der Vereinigten Staaten, vor allem in Auwäldern und an Flussufern, 1726 durch den englischen Naturforscher Mark Catesby (1683-1749) von Carolina nach Europa gebracht.

Der Baum kann 15-18 m hoch werden. Alte Trompetenbäume bilden Absenkeräste, die einwurzeln (auf der Insel Mainau zu sehen!) und damit der Ausbreitung dienen.

Die herzförmigen bis schwach gelappten, glattrandig Blätter treiben erst sehr spät aus. Beim Zerreiben riechen sie unangenehm. In letzter Zeit kommt es in Deutschland zur Auswilderung, was vermutlich mit der Klimaerwärmung zusammenhängt.

Das Verbreitungsgebiet von Catalpa deckt sich etwa mit dem ursprünglichen Siedlungsgebiet Chirokee und vier weiterer Indianerstämme, die wegen ihrer Anpassung an die Lebensweise der Kolonisten auch als die „ Fünf zivilisierten Nationen“ bezeichnet wurden. Sequoyah (1763-1843), Sohn einer Cherokee-Indianerin und eines europäischen Händlers erfand die Cherokee Schrift, die heute noch für die Cherokee-Sprache verwendet wird. Der Mammutbaum Sequoia sempervirens wurde nach ihm benannt. Der Vertrag von New Echota von 1835 führte zur Vertreibung der Cherokee aus dem südöstlichen Waldland in Carolina und Georgia in ein karges Territorium im Staate Oklahoma. Bei dieser gewaltsamen Umsiedlung, die als „Trail of Tears“ in die Geschichte eingegangen ist, kamen vermutlich um die 8000 der Deportierten ums Leben (teilweise nach Wikipedia).

Purpur-Magnolie (Magnolia liliiflora)

Purpur-Magnolie – Magnolia liliiflora, 8.5.2021,Foto A. Winter

Heimat: China (Prov. Yunnan und Hubei); als Zierbaum in China weit verbreitet.

Das Gehölz ist meistens fast von der Basis an verzweigt und erreicht etwa 5m Wuchshöhe. Die Krone ist meist breit, Stamm und Äste sind oft unregelmäßig gekrümmt. Die Zweige sind hellgrau bis braun und nicht behaart. Auch an dickeren Stämmen bleibt die graue Rinde glatt.

Die Magnolien (Magnolia) sind eine Pflanzengattung der Familie der Magnoliengewächse mit über 200 Arten in Ostasien und Nordamerika. Ihren Namen gab ihr Linné zu Ehren des französischen Botanikers Pierre Magnol (1638–1715). Einige Magnolien haben sind beliebte Ziergehölze vor allem die Stern-Magnolie und die Tulpen-Magnolie, ein Hybrid aus Magnolia denudata und Magnolia liliiflora.

Magnolien sind sehr ursprüngliche Blütenpflanzen. Bei einer auf genetischen Analysen beruhenden Rekonstruktion einer Urblüte kam eine Blüte heraus, die dem Habitus der heutigen Magnolienblüten sehr ähnlich sieht.

Rekonstruktion einer Urblüte nach Sauquet, H. et al. (2017): The ancestral flower of angiosperms and its early diversification.Nature communications, DOI: 10.1038/ncomms16047

Gewöhnlicher Judasbaum (Cercis siliquastrum)

Gewöhnlicher Judasbaum – Cercis siliquastrum am Martinsplatz in Oberteuringen, 8.5.2021, Foto A. Winter

Heimat: Südeuropa bis Vorderasien

Angeblich hat sich Judas an einem solchen Baum erhängt. Andere Namen: Salatbaum, Liebesbaum, Stammhülsenbaum

Die Gattung hat einen Verbreitungsschwerpunkt in China (5 Arten), 4 Arten kommen in Nordamerika und eine in Zentralasien vor.

Typisch ist die Kauliflorie (Stammblütigkeit). Die biologische Erklärung ist, dass dies auch schwerere Tiere wie Kleinsäugern und Vögeln die Bestäubung ermöglicht. Kauliflore Pflanzen gibt es fast nur bei tropischen Pflanzen.

Gemeindemitteilungen Oberteuringen,20.11.20

Aus unserer Gemeinde

Der von Michaela und Manuel Knöpfler gespendete Cercis reniformis (= C. canadensis*) -Baum, auch Ju-dasbaum genannt, verschönert ab sofort den Vorplatz der Kirche St. Martin und soll als Zeichen des Lebens gerade in diesen Zeiten Mut machen. Auch wenn der Baum ausgerechnet den Namen des Jün-gers trägt der Jesus verraten und an die Römer ausgeliefert hat, nahm Jesus Schicksal durch ihn seinen Lauf. Mit seiner Auferstehung finden wir heute Hoffnung im Glauben auf das ewige Leben. Der Baum steht zwischen 2 Bänken, die bereits im Jahr 2011 ebenfalls von Michaela und Manuel Knöpfler gespendet wurden. Diese laden zum Innehalten ein und ermöglichen den Blick auf die wunderschöne Kirche St. Martin.

*Die Blattform spricht dafür, dass es sich bei der Art um Cercis siliquastrum handelt (W. Probst)

In dem gemulchten Beet, in dem der Judasbaum steht, entdeckten wir den Fruchtkörper einer Spitz-Morchel (Morchella elata).

Spitz-Morchel (Morchella elata) unter dem Judasbaum neben der Martinskirche in Oberteuingen; man beachte die Feuerwanze(!), 9.5.2021 (Foto S. Probst)

Lawsons Scheinzypresse, Oregon-Scheinzypesse (Chamaecyparis lawsoniana)

(nach dem schottischen Botaniker Peter Lawson benannt)

Oregon-Scheinzypresse (Chamaecyparis lawsoniana) am St. Martinsplatz in Oberteuringen, 9.5.2021, Foto W. Probst

Heimat: Südwest-Oregon und Nordwest-Kalifornien.

Der Unterschied zu den Echten Zypressen (Cupessus) besteht darin, dass Scheinzypressen stärker abgeflachte Zweige und zweierlei schuppenartige Blätter sowie kleinere, kugelige Zapfen besitzen und Samen früher reifen. Die ebenfalls sehr ähnlichen Lebensbäume (Thuja) haben im Gegensatz zu den Scheinzypressen kleine, längliche Zapfen. Die etwa fünf Arten (Chamaecyparis) sind in den nördlicheren Breiten Nordamerikas und Ostasiens verbreitet. Die Oregon-Scheinzypresse kann in ihrer Heimat bis 65 m hoch werden – so hoch wie der Kirchturm von St. Martin!

Das hellgelbe, harzfreie Holz wird für Schiffsbau und Möbel verwendet. In Europa ist der Baum, von dem es zahlreiche Sorten gibt, ein häufiges Ziergehölz. Mittlerweile gibt es wild wachsende Vorkommen.

Artenarmut mitteleuropäischer Wälder im Vergleich mit Nordamerika und Ostasien

In Mitteleuropa gedeihen viele Gehölzarten aus Nordameria oder dem nördlichen Ostasien, die dort unter ähnlichen Klimabedingungen wie hier existieren können. Dies hängt damit zusammen, dass die Waldvegetation Mitteleuropas während der vor etwa 2,6 Millionen Jahren beginnenden Kaltzeiten fast vollständig vernichtet wurde. Im Gegensatz zu Ostasien und Nordamerika, wo die Hauptgebirgsketten vorwiegend von Norden nach Süden verlaufen,war der Vegetation Mitteleuropas beim Vordringen der kaltzeitlichen Gletscher ein Rückzug nach Süden durch die Alpenkette weitgehend versperrt. Darin sieht man den Grund dafür, dass die mitteleuropäische Gehölzvegetation sehr viel artenärmer ist, als die entsprechenden Pflanzengesellschaften in Nordamerika und Ostasien. Im Pliozän, vor dem Beginn der Kaltzeiten (des Pleistozäns) kamen viele der heute bei uns angepflanzten Arten oder nahe Verwandte dieser Pflanzen auch in Mitteleuropa vor. Dies ist ein Argument mancher Forstleute, nun in Mitteleuropa die Aufforstung mit amerikanischen und asiatischen Baumarten zu versuchen, die mit dem Klimawandel besser zurechtkommen könnten.

Gehölze an der Rotach

Im Ortsgebiet von Oberteuringen wird die Rotach von einer Vielfalt einheimischer Gehölze gesäumt. Wir lernten sie kennen, indem wir für sie einen Bestimmungsschlüssel bastelten.

Diese Blattmerkmale werden auf einem weißen Laken ausgelegt.

Die Aufgabe besteht nun zunächst darin, zu jedem der sechs hier grün markierten Endpunkte des Bestimmungsganges Beispiele zu finden. Alle Blätter, die zu einer Art gehören, werden auf einem Haufen angeordnet. Anhand der gefundenen Blätter werden mögliche Merkmalsalternativen zur weiteren Bestimmung besprochen. Alle Arten werden mit Namen beschriftet.

Fotos A. Winter

Seifenkraut (Saponaria offcinalis)

Am Wegrandentdecken wir einen großen Bestand des Seifenkrautes. Das Nelkengewächs wird von einer Teilnehmerin, die sich sehr gut auskennt, entdeckt, obwohl die zart rosavioletten Blüten noch lange nicht entwickelt sind. Der Name der Pflanze weist auf ihre frühere Verwendung als Seifenersatz hin. Alle Pflanzenteile insbesondere die Wurzelstöcke enthalten Wasseroberflächen-entspannende Triterpensaponine. Wir zerreiben einige Triebe und schütteln Sie in einem Behälter mit Wasser und wir können die Schaumbildung beobachten.

Seifenkraut-Extrakte werden bis heute bei der schonenden Reinigung von alten Textilien und Möbelstücken verwendet (Wikipedia).

Foto A. Winter

Suchen und finden

Alle Teilnehmenden erhalten eine Suchkarte für eine Pflanzenart:

Die Arten werden ziemlich schnell gefunden: Bär-Lauch (Allium ursinum), Winter-Schachtelhalm (Equisetum hiemale), Einbeere (Paris quadrifola), Schuppenwurz (Lathraea squamaria). Letztere ist ein völlig Chlorophyll-freier Parasit an Laubbäumen.

Schuppenwurz – Lathraea squamaria – an der Rotach bei Oberteuringen, Foto W. Probst

Kletterpflanzen

Je höher eine Pflanze wächst, desto kräftiger muss ihr Stamm sein. Aber das gilt nicht für alle! Kletterpflanzen nutzen die Stabilität ihrer Unterlagen.

Bei der Brücke über die Rotach wachsen zwei Kletterpflanzen-Arten, die verholzte Liane Gewöhnliche Waldrebe (Clematis vitalba) und der krautige, jedes Jahr neu aus dem unterirdischen Wurzelstock auswachsende Echte Hopfen (Humulus lupulus). Die Waldrebe hält sich mit ihren rankenden Blattstielen an der Unterlage fest, der Hopfen windet mit seiner Sprossachse um die Unterlage, und zwar so, dass in der Seitenansicht ein S zu erkennen ist (Rechtswinder). Diese Richtung des Winden ist bei Kletterpflanzen im allgemeinen genetisch festgelegt, d. h. die Pflanzen können nur nach rechts oder nach links winden. Bei Linkswindern erkennt man in der Seitenansicht ein  Z.

Lianen können hoch in Bäume hinaufklettern und viel Laubwerk entwickeln, dabei bleiben ihre Sprossachsen viel dünner als die Stämme der Bäume. Sie müssen aber fast gleich viel Wasser transportieren. Deshalb ist es wichtig, dass ihre Wasserleitungsbahnen sehr effektiv sind. Lianen haben deshalb die weitesten Tracheen aller Pflanzen (Durchmesser bis 0,7 mm). Auch die Leitungsbahnen der Waldrebe kann man schon mit bloßem Auge sehen. Wir schneiden einen etwa 1,50 m langen Sprossabschnitt der Waldrebe heraus: es gelingt ohne Mühe, durch diesen Stab Luft in ein Wasserglas zu blasen. Bei der Erweiterung der Leitungsbahnen gibt es allerdings eine Grenze: Werden die Durchmesser zu groß, reichen die Adhäsion und Kohäsionskräfte der Wassermoleküle nicht mehr aus um den hydrostatischen Unterdruck auszugleichen. Es bilden sich Luftblasen und die Wassersäule reist ab („Gasembolie“).

Spross der Gewöhnlichen Waldrebe- Clematis vitalba – quer- mit großlumigen Tracheen, Foto A. Winter

Wiesen

Wiesen und Weiden sind in unserem Klima fast ausschließlich Folgen landwirtschaftlicher Nutzung. Sie können sich nur halten, wenn sie regelmäßig von Weidetieren abgefressen oder gemäht werden. Aber sie machen mittlerweile in Mitteleuropa 50 % der landwirtschaftlich genutzten Fläche und 20 % der Gesamtfläche aus. Die Art der Bewirtschaftung ist für die Biodiversität entscheidend.

Typisch für Wiesen ist ihre Schichtung. Ähnlich wie die Frühjahrsblüher im Wald so haben die Wiesenpflanzen der Unterschicht ihre beste Entwicklungsmöglichkeiten im Frühjahr, wenn die Wiese noch nicht hoch gewachsen sind.

Wir sortieren die Wiesenpflanzen nach der Zugehörigkeit zur Unterschicht, Mittelschicht und Oberschicht.

Schichten einer Wiese

Die ersten Landlebewesen

Kolonie von Nostoc commune

Auf dem Weg zurück zum Ortszentrum bzw. zum Franz-Roth-Platz kommen wir an eine vertetene ziemlich feuchte Wegstelle mit eigenartig schwärzlichen Belägen, die mit Wasser zu olivfarbenen Gallertklumpen aufquellen. Es handelt sich um das Blaugrüne Bakterium Nostoc. So ähnlich könnten die ersten Lebewesen ausgesehen haben, die vor mehr als 3 Milliarden Jahren das Festland besiedelten.

Foto W. Probst

Artenliste

(Zusammengestellt von Jennifer Friedrich)

Bäume auf dem Kirchplatz:

Trompetenbaum (Catalpa bignonioides)

Purpur-Magnolie (Magnolia liliflora)

Judasbaum (Cercis siliquastrum)

Lawsons Scheinzypresse (Chamaecyparis lawsoniana)

Im Beet beim Judasbaum:

Vielblütige Weißwurz (Polygonatum multiflorum)

Spitz-Morchel (Morchella elata) – Schlauchpilz

Bäume und Sträucher aus dem Bestimmungquiz:

Blätter gefiedert:

Schwarzer Holunder (Sambucus nigra)

Gemeine Esche (Fraxinus excelsior)

Echte Walnuss (Juglans regia)

Blätter handförmig gelappt:

Spitz-Ahorn (Acer platanoides)

Berg-Ahorn (Acer pseudoplatanus)

Feld-Ahorn (Acer campestre)

Gemeiner Schneeball (Viburnum opulus)

Gemeiner Efeu (Hedera helix)

Blätter nicht handförmig gelappt:

Stiel-Eiche (Quercus robur)

Blätter nicht gelappt, Rand glatt:

Roter Hartriegel (Cornus sanguinea)

Weide – Salix spec.

Rote Heckenkirsche (Lonicera xylosteum)

Gewöhnlicher Liguster (Ligustrum vulgare)

Blätter nicht gelappt, gesägt/gezähnt:

Berg-Ulme (Ulmus glabra)

Gewöhnliche Traubenkirsche (Prunus padus)

Schwarz-Erle (Alnus glutinosa)

Eberesche (Vogelkirsche) (Sorbus aucuparia)

Gemeine Hasel (Corylus avellana)

Europäisches Pfaffenhütchen (Euonymus europaeus)

Weitere Arten:

Selbstkletternde oder Fünfblättrige Jungfernrebe – (Parthenocissus quinquefolia) Gewöhnliches Seifenkraut (Saponaria officinalis)

Gewöhnlicher Giersch (Aegopodium podagraria)

Wasseramsel (Cinclus cinclus) – haben wir auf der Exkursion zwar nicht gesehen, kann hier aber regelmäßig beobachtet werden. Immer wieder hörten wir den Gesang von Amsel, Buchfink, Zilp-Zalp (Weidenlaubsänger) und Mönchsgrasmücke

Kletterpflanzen

Echter Hopfen (Humulus lupulus) (S-Winder)

Gewöhnliche Waldrebe (Clematis vitalba) (Z-Winder; außerdem dienen die Blattstiele und Spindeln zwischen der Fiedern als Ranken)

Suchspiel mit Karten:

Gewöhnliche Schuppenwurz (Lathraea squamaria)

Vierblättrige Einbeere (Paris quadrifolia)

Winter-Schachtelhalm (Equisetum hyemale)

Bär-Lauch (Allium ursinum)

Auf der Streuobstwiese:

Oberes Wiesenstockwerk/Wiesenschicht:

Wiesen-Sauerampfer (Rumex acetosa)

Scharfer Hahnenfuß (Ranunculus acris)

Wiesen-Labkraut (Galium mollugo)

Stumpfblättriger Ampfer (Rumex obtusifolius)

Gold-Kälberkropf (Chaerophyllum aureum)

Gewöhnliches Knäuelgras (DactylIs glomerata)

Mittelschicht:

Gewöhnliches Ruchgras (Anthoxanthum odoratum)

Wiesen-Schaumkraut (Cardamine pratensis)

Wiesen-Rispengras (Poa pratensis)

Unterschicht:

Gewöhnlicher Löwenzahn (Taraxacum sect. Ruderalia) (Taraxacum officinale)

Zaun-Wicke (Vicia sepium)

Wiesen-Klee (Rotklee) (Trifolium pratense)

Faden-Klee (Kleiner Klee) (Trifolium dubium)

Kleine Braunelle (Prunella vulgaris)

Kriechender Günsel (Ajuga reptans)

Gundermann (Glechoma hederacea)

Scharbockskraut (Ficaria verna )

Kriechendes Fingerkraut (Potentilla reptans)

Quellen-Hornkraut (Cerastium fontanum)

Quendel-Ehrenpreis (Veronica serpyllifolia)

Faden-Ehrenpreis (Veronica filiformis)

Spitz Wegerich (Plantago lanceolata)

Auf dem Rückweg

Nostoc sp.; gehört zu den Cyanobakterien

15. Mai 2021 Weingarten

Treffpunkt: Eingang zum Freibad.

Natur wahrnehmen und erleben

„Wenn wir eine Gesellschaft schaffen wollen, die die Natur wirklich liebt und ihr mit Ehrfurcht begegnet, müssen wir den Mitgliedern dieser Gesellschaft Erlebnisse in der Natur anbieten, die ihr Leben verändern.“ Joseph Cornell

Längst ist bekannt, dass das reine Wissen über die Bedrohung und die Schutzwürdigkeit der Natur allein nicht ausreicht. Aus diesem Grund stand die Exkursion am 15. Mai 2021 unter dem Thema „Natur wahrnehmen und erleben“.

Innerhalb der 4 Stunden mussten die Studierende der Pädagogischen Hochschule alle ihre Sinne einsetzten. Der Tag begann zunächst mit kleineren Kennenlernspielen um wach zu werden und die eigene Konzentration hochzufahren.

Hören

Der erste Sinn, das Hören, wurde als erstes angesprochen. Die Studierende sollten bei der Aktion „Geräusche hören“ sich auf ihr Gehör verlassen und die Geräusche in ihrer Umwelt wahrnehmen. Schritt für Schritt wurden sie an die Aktion herangeführt. Zunächst durften sie einfach darauf los hören, danach wurden gezielte Aufgaben gestellt um das Gehör zu schulen. Die Studierende stellten mit erstaunen fest, dass es anfangs gar nicht so leicht war, mit etwas Übung die Geräusche jedoch lauter und deutlicher wurden.

Tasten

Der Tastsinn war als nächstes an der Reihe. Nachdem die einzelnen Teilnehmer einen Naturgegenstand in die Hand gelegt bekommen und diesen erfühlt hatten, gingen sie auf die Suche, ihren Partner mit dem gleichen Gegenstand zu finden. Hier stolperten die Studierende über die Schwierigkeit, die richtigen Worte für ihren Gegenstand zu finden. Aber auch hier wurden die Fähigkeiten schnell immer besser, sodass jeder seinen Partner fand, und sie zu Zweit in die nächste Aktivität konnten… „Bäume fühlen“.  Zunächst sollte jeweils einer des Teams, blind in den Wald geführt werden und durch „Schwingungen“ erfühlen, wo der nächste Baum sich befand. In der zweiten Runde durften die Teilnehmer einen Baum mit ihren Händen erfühlen und diesen so kennenlernen. Die Studierenden berichteten begeistert davon, dass es zwar nicht immer leicht war, aber jeder Baum dennoch etwas Einzigartiges an sich hatte, an dem man ihn durchaus wiedererkennen würde.

Sehen

Die dritte Aktivität zielte auf das Sehen ab. Mit der Aktion „Umwelt im Umschlag“ wurden die Studierenden gezielt mit konkreten Aufgaben los geschickt um ihre Umwelt zu untersuchen und Gegenstände mitzubringen. Bei der Nachbesprechung und der Entwicklung weiterer möglicher und interessanter Fragen, brachte Noemi (ich hoffe an dieser Stelle, den richtigen Namen genannt zu haben) die Idee ins Spiel, den Geruchsinn mit anzusprechen. „Sammle mindestens 5 Dinge, die typisch nach Wald riechen.“ Gesagt, getan…

Gleichgewicht

Der letzte Sinn an diesem Tag war der Gleichgewichtssinn. Mit dem Spiel „Der schlafende Geizhals“ sollten die Studierende einem schlafenden Geizhals, welcher mit einer Wasserspritzflasche bewaffnet war, auf möglichst leisen Sohlen, die Schokolade, die vor ihm auf dem Waldboden lag, abnehmen. Gar nicht so einfach, wenn es bei jedem Schritt und Tritt knackst und raschelt.

Resumee

Nach einer schnellen Runde „Luftballon-Resümee“ war der Tag auch schon wieder vorbei.

„Ich habe heute gelernt, ohne zu merken, dass ich etwas lerne.“

29. Mai 2021 Obrteuringen, NSG Altweiherwiese

Treffpunkt an der Unterführung der Straße nach Bibruck unter der L 329 nach Meckenbeuren

1. Anfahrt von Ravensburg bis Oberteuringen auf der B33 bis Oberteuringen Ortsteil Hefigkofen

2. Dort am Gasthaus Adler nach links abbiegen Richtung Meckenbeuren

3. Der Straße folgen bis zur Abzweigung einer kleinen Straße links nach Bibruck

Quelle: Google Maps

Zum Naturschutzgebiet Altweiherwiese

Das 78 ha große Naturschutzgebiet Altweiherwiesen wurde 1981 vom Regierungspräsidium Tübingen ausgewiesen. Es liegt nordöstlich von Oberteuringen auf einer Meereshöhe von rund 450 m.

Im späten Mittelalter legten hier Mönche des Klosters St. Gallen durch Aufstau des Taldorfer Baches in Höhe der heutigen L329 einen Fischweiher an. Mitte des 18. Jahrhunderts wurde der Teich abgelassen und die feuchten Niederungen wurden bis Mitte des 20. Jahrhunderts als Streuwiesen genutzt. Heute werden die Wiesen von Naturschutz regelmäßig gemäht und das Mähgut wird entfernt. Dadurch wird das Mineralstoffangebot niedrig gehalten und das Aufkommen von Gehölzen verhindert.

Das umgebende Landschaftsschutzgebiet „Altweiherwiese und Taldorfer Bach“ soll das Naturschutzgebiet gegen störende Einflüsse von der Umgebung abschirmen.

Zur Landschaftsgeschichte

Auf einer topographischen Karte und noch deutlicher in einem digitalen Geländemodell erkennt man, dass das Naturschutzgebiet Altweiherwiese in der Fortsetzung eines Tals liegt, dass eine Verbindung zwischen Schussenbecken und der Niederung südlich des Gehrenbergs darstellt. Dabei handelt es sich um eine alte Schmelzwasserrinne, die am Ende der letzten Kaltzeit vor etwa 15.000 Jahren am damaligen Gletscherrand entstand. Dieses Rückzugsstadium des Gletschers, das sich einige Zeit hielt und kleine Endmoränen ablagerte, wird auch als Konstanzer Stadium bezeichnet. Die Schmelzwasserrinne war ein Teil der Ur-Argen, in der sich die Schmelzwasser vom nördlichen Gletscherrand sammelten und dem damals schon in Teilen existierenden Überlinger See zuflossen. In der Schmelzwasserrinne kam es immer wieder zu kleinen Aufstauungen, und Seenbildungen und darin zu Ablagerungen von Feinmaterial. Dadurch entstanden gegen das eiszeitliche Schottermaterial abgedichtete Bereiche, über denen es zu Torfbildung kommen konnte.

Ausdehnung des Rheingletschers vor ca. 15 000 Jahren. Die Schmelzwasserrinne am nördlchen Gletscherrand dieses als Kostanzer Stadium bezeichneten Gletscherrand-Verlaufs bildete die heutige Niederung des NSG Altweiherwiese (Zeichnung nach T. Gittner aus F. Beran 2002)

Heute wird die breite Talniederung von dem kleinen Taldorfer Bach durchflossen

Gräser

Gräser sind keine besonders auffälligen Pflanzen. Als Windbestäuber fehlen ihnen auffällige Blüten. Auf den ersten Blick kann man deshalb die verschiedenen Arten nur schwer unterscheiden. Bei genauem Hinsehen lassen sich jedoch meistens gute Bestimmungsmerkmale finden.

Zunächst probieren wir, ob man Grasarten auch blind unterscheiden kann, wenn man sie im Gesicht fühlt oder mit den Fingern ertastet. Es zeigt sich dass dies erstaunlich gut funktioniert, insbesondere, da bestimmte Merkmale, die man leicht übersieht – wie samtige Behaarung oder feine Grannen – sich ganz gut ertasten lassen.

Dann werden die verschiedenen Bestimmungsmerkmale der Süßgräser (Familie Poaceae) mithilfe eines Puzzles und realen Gräsern vorgestellt:

Blütenstand und Blüte

Als Einheit der Grasblütenstände gilt das Ährchen, das aus einer bis vielen Blüten bestehen kann. Diese Ährchen sind charakteristischerweise in einer Rispe angeordnet, seltener können die einzelnen Ährchen auch direkt an der Hauptachse sitzen, dann spricht man von einem Ährengras. Manchmal sind die Listen Äste sehr kurz, sodass der Blütenstand – obwohl er stärker verzweigt ist – wie eine Ähre aussieht (Ährenrispengras).

Jedes Ährchen hat an der Basis zwei Hüllspelzen, dann folgt vor jeder Blüte des Ährchens eine Deckspelze, eine Vorspelze und zwei Schwellkörper, die dafür sorgen, dass die Blütenteile bei der Reife auseinandergedrückt werden. Nach innen folgen drei Staubblätter und ein Stempel mit zwei fiederigen Griffelästen. Aus jeder Blüte schieben sich zunächst die Staubblätter mit langen beweglichen Fäden heraus und entlassen viele Pollen. Später entwickeln sich die federartigen Griffeläste mit den Narben die hervorragend zum auffangen der Pollen geeignet sind.

Halm

Die Sprossachse der Gräser ist meist unverzweigt und bildet mehrere auffällige Verdickungen. An diesen Knoten entspringen die wie eine Scheide den Stängel umfassenden Blätter. Nach einigen Zentimetern geht die Blattscheide in die Blattspreite über. An dieser Übergangsstelle finden sich entscheidende Bestimmungsmerkmale: das Blatthäutchen (Ligula) und die Öhrchen. Wenn man an einem Grashalm zieht, reißt er in der Regel an den Knoten, denn dort befindet sich wenig stabiles, teilungsfähiges Gewebe (interkalares Meristem). Im Unterschied zu den meisten anderen Pflanzen können sich die Sprosse wachsenden Gräser an den Knoten strecken und aufrichten, wenn sie vom Wind umgelegt wurden, oder sogar Wurzeln bilden. Das Bildungsgewebe an der Bruchstelle der Sprossachsen schmeckt süß.

Ausgewachsene Grashalme haben im Inneren oft einen Hohlraum (Trinkstrohhalm).

Verzweigungen

Die meisten Grasarten – eine Ausnahme bilden die Bambusse – verzweigen sich nur ganz nahe der Basis oder im Boden. Je nachdem, ob sich die Seitenzweige schnell nach oben krümmen oder ein Stück weit waagrecht wachsen, unterscheidet man Horstgräser, Rasengräser und Ausläufergräser.

Zum Schluss sammeln wir Gräser und ordnen sie entsprechend einem Merkschema.

Zwei weitere mit der Süßgräsern verwandte Familien sind die Sauergräser und die Binsengewächse

Zur Biberburg

Kurz vor der Brücke über den Taldorfer Bach nehmen wir den Weg rechts bergauf in den Wald. Der Weg verläuft etwas oberhalb des Baches. Wir beschäftigen uns mit einigen Pflanzen des Wegrandes zum Beispiel mit den Stickstoffzeigern (Zeigerpflanzen siehe unten) Klebriges Labkraut und Große Brennnessel. Zwischen den Brennnesseln wachsen Wald-Ziest und Hohlzahn, die ohne Blüten den Brennnesseln sehr ähnlich sehen. Andere Beispiele für Pflanzen-Mimikry (Nachahmen der Brennhaar-bewehrten Brennnesseln) sind Taubnesseln und Nesselblättrige Glockenblume.

Schließlich können wir durch das Unterholz die stattliche Biberburg erkennen. Ihre Eingänge liegen unter Wasser, aber die Wohnhöhle liegt über dem Wasser. Möglicherweise finden sich dort gerade junge Biber, denn normalerweise bringen Biber Ende April bis Anfang Mai ihre Jungen zur Welt. Sie bleiben bis zu einem Alter von 4-6 Wochen im Bau. Biber waren früher als Fastenspeise begehrt, da sie wegen ihres Schwanzes zu den Fischen gezählt wurden. Besonders wertvoll war der sehr dichte Biberpelz (23.000 Haare pro cm2, im Vergleich dazu kommt der Mensch nur  auf ca. 200 Haaren pro cm2). Ein weiteres wertvolles, von Biber stammendes Handelsgut war das Bibergeil, ein Exkret, das in zwei etwa Hühnerei großen Blasen gesammelt und durch eine Ausführöffnung im Analbereich ausgeschieden wird. Dem Biber dient die Flüssigkeit der Fellpflege und der Reviermarkierung. Die Menschen nutzten sie wegen ihrer Inhaltsstoffe – zum Beispiel Hydroxybenzoesäuren und Abkömmlinge – als Medikament. Die Inhaltsstoffe oder ihre Vorläufer stammen vermutlich aus der pflanzlichen Nahrung des Bibers, zum Beispiel der Rinde von Weiden.

Der Biber ist das größte einheimische Nagetier. Mit seinem kräftigen Nagezähnen kann er große Bäume fällen. Ihre Zweige nutzt er einmal für den Bau seiner Burgen und Dämme, zum anderen dienen Knospen und Rinde als Nahrung. Für den Winter legt er Nahrungszweigdepots im Wasser an.

Zwischen Bast und Borke

Den nährstoffreichen Teil der Rinde, den Bast, der dem Assimilatetransport der Bäume dient, nutzen viele Tiere als Nahrung. Dazu zählen nicht nur Mäuse, Kaninchen, Hasen und Rehe, die an den Bäumen ihre Nagelspuren hinterlassen, sondern auch viel kleinere Tierchen, die Borkenkäfer. Sie gelten als Schwächeparasiten und die trockenen Sommer der vergangenen Jahre haben dazu geführt, dass insbesondere sehr viele Fichten von Borkenkäfern besiedelt wurden. Die rindenbrütenden Borkenkäfer legen ihre Eier unter der Rinde ab und die Larven fressen sich in langsam vergrößernden Gängen in den Bast. Diese Gänge kann man auf der Innenseite abgeschälter Rindenstücke sehr gut als Spuren erkennen. Form und Verlauf dieser Fraßgänge sind von Art zu Art unterschiedlich.

Gangsysteme des Buchdruckrs (Ips typographica) in Fichtenrinde, Teuringer Holz, 29.5.2021, Foto A. Winter

Außerdem gibt es sogenannte holzbrütende Borkenkäfer, deren Larvengänge in den Holzkörper hinein führen. Diese Käfer können sich von dem Holz nur mithilfe von Holz zersetzenden Pilzen ernähren, deren Hyphen die Gänge auskleiden und die sie fressen. Von außen kann man als Spuren dieser Käfer nur die Löcher im Holzkörper sehen. Größere Löcher stammen zum Beispiel von Bockkäfern. Wir finden die schon verlassene Puppenwiege eines Schrotbocks (Rhagium instructor), die aus kreisförmig ausgelegten Holzspänen besteht. Unter der abgestorbenen Rinde und unter den am Boden liegenden Rindenstücken kann man zahlreiche andere Tiere finden, die sich entweder von den organischen Abfallstoffen oder als Beutegreifer ernähren. Uns fallen vor allem zahlreiche Schließmundschnecken, einige Asseln, Tausendfüßler, Spinnen und kleinere sehr flinke Laufkäfer (wahrscheinlich Gattung Pterostichus) auf. Die meisten Borkenkäfer sind vermutlich ausgeflogen, aber wir finden noch einige Exemplare. Bei der Betrachtung durch die Becherlupen erkennen wir, dass an einigen Käfern Milben sitzen, welche die Käfer vermutlich nur als Transportmittel benutzen (phoretische Milben).

Weitere Beobachtungen

In dem Gebiet befinden sich zahlreiche alte Baumstümpe und abgestorbene Bäume. An mehreren Stellen solcher morscher (von Pilzen zersetzter) Stümpfe oder Stämme finden sich tiefe Hacklöcher, die vermutlich vom Schwarzspecht stammen, der regelmäßig im Gebiet zu hören und zu beobachten ist. Einen Pilzfruchtkörper identifizieren wir als Abgeflachten Lackporling (Ganoderma applanatum).

Hackloch eines Schwarzspechts (?) in einem morschen Eichenstamm (Weißfäule). Links sind die Reste eines Fruchtkörpers des Abgeflachten Lackporlings zu erkennen , Teuringer Holz 29.5.2021, Foto A. Winter

Ein typischer Pilzbefall an Rispengras-Halmen (rings um den Halm gehender weißer Belag) kann dem endophytische Pilz Epichloë typhina zugeordnet werden.

Nagelfluh-Kiesgrube

Der für mich mit dem Rollstuhl befahrbare Weg endet an einer verbreiterten Stelle mit steilen Wänden, die in der topographischen Karte als „Teuringer Holz“ markiert ist. Es handelt sich dabei um eine alte Kiesgrube, in der Interstadialer Nagelfluh abgebaut wurde, also verbackene Kiesablagerungen aus einer wärmeren Periode der Würm-Kaltzeit. In der Liste der Geotope im Bodenseekreis findet sich dazu folgende Beschreibung:

Aufgelassene Kiesgrube am Prallhang des Taldorfer Bachs, 1000 Meter östlich von Oberteuringen, an deren Südrand rund fünf Meter mächtige, zu Nagelfluh verfestigte interstadiale Schotter („alte Kiese von Oberteuringen“) zutage treten. Sie sind wahrscheinlich der „Laufenschwankung“, einem großen Rückzugsstadium zwischen Würm I und Würm II zuzuordnen. Der Aufschluss befindet sich am Südrand des Oberteuringer Eisrandtals, das erst später entstanden ist und hier mit einer Breite von etwa 500 Meter einen ehemaligen Gletscherrand markiert.

Geologische Einheit: Quartär
Status: schutzwürdig

Ehemalige Kiesgrube im Teuringer Holz, 29.5.2021, Foto A. Winter

Riedwiesen

Botanisch besonders interessant ist die Riedfläche südlich der Straße, die nach Bibruck bzw. Wammeratswatt führt. Die Fläche wird von Naturschutz regelmäßig aber nicht jährlich gemäht. Wir können verschiedene Knabenkraut-bzw. Fingerwurz-Arten (Dactylorhiza majalis und. D. incarnata) finden, außerdem das Mittlere Zittergras (Briza media), Gelbe Segge (Carex flava) und Hirse-Segge (Carex panicea).

Breitblättriges Knabenkraut (Dactylorhiza majalis) und Mittleres Zittergras (Briza media), NSG Altweiherwiese, 9.5.2021, Fotos A. Winter

Zeigerwerte von Pflanzen

„Die Zeigerwerte sind Kurzbezeichnungen für das ökologische Verhalten, d. h. der Standortsbeziehungen der Pflanzen unter dem Einfluss zahlreicher Konkurrenten“ (Ellenberg 1991). 

Pflanzen können Zeiger für bestimmte Standortfaktoren sein. Der Pflanzenökologe und Vegetationskundler Heinz Ellenberg, ordnete ab den 1950er Jahren den mitteleuropäischen Pflanzenarten aufgrund empirischer Erfahrungen Zeigerwerte für sieben verschiedene Umweltfaktoren zu, und zwar für die Standortfaktoren Licht (Lichtzahl), Temperatur (Temperaturzahl), Kontinentalität (Kontinentalitätszahl), Feuchtigkeit (Feuchtezahl), Stickstoff (Stickstoffzahl) und Bodenreaktion,pH-Wert (Reaktionszahl).

URL zur Zeigerwertliste: http://botanik.mettre.de/alpha_liste.shtml

Als Beispiel seien hier die Zeigerwerte von drei Süßgräsern unterschiedlicher Standorte verglichen:

 Art StandortLTKFNR
Taube Trespe (Bromus sterlis)Wegrand7744X5
Glatthafer (Arrhenaterum elatius)Fettwiese853577
Mittleres Zittergras (Briza media)Streuwiese bzw. Ried8X3XX2

Artenliste

(Zusammengestellt von Jenifer Friedrich und Anastaia Winter)

Gräser:

Süßgräser (Poaceae):

Glatthafer (Arrhenatherum elatius)

Kammgras (Cynosurus cristatus)

Wohlriechendes Ruchgras (Anthoxanthum odoratum)

Wolliges Honiggras (Holcus lanatus)

Gewöhnliches Rispengras (Poa trivialis)

Taube Trespe (Bromus sterilis) (Ruderalgras)

Weiche Trespe (Bromus hordaceus)

Wiesen-Fuchsschwwanz (Alopecurus pratensis)

Wiesen-Schwingel (Festuca pratensis)

Hunds-Quecke (Elymus caninus)

Fieder-Zwenke (Brachypodium pinnatum)

Mittleres Zittergras (Briza media)

Sauergräser (Cyperaceae):

Steife Segge (Carex elata)

Zittergras-Segge (Carex brizoides)

Wald-Segge (Carex sylvatica)

Gelbe Segge (Carex flava)

Hirsen-Segge (Carex panicea)

Binsengwächse (Juncaceae):

Feld-Hainbinse( auch Hain“simse“, aber „Simsen“ kommen auch bei der Familie Sauergräser vor) (Luzula campestris agg., Sammelart, unsere Pflanze war vermutlich L. multiflora))

Andere Pflanzen, Sträucher, Bäume:

Wolliger Schneeball (Viburnum lantana)

Gewöhnlicher Schneeball (Viburnum opulus)

Europäisches Pfaffenhütchen (Euonymus europaeus)

Rot-Fichte(Picea abies)

Stiel-Eiche (Quercus robur)

Rot-Buche (Fagus sylvatica)

Gewöhnlicher Haselstrauch (Corylus avellana)

Hänge-Birke (Betula pendula)

Schwarz-Pappel (Populus nigra)

Silber-Weide (Salix alba)

Schöllkraut (Chelidonium majus)

Hohlzahn (Gattung Galeopsis)

Große Brennnessel (Urtica dioica)

Wald Ziest (Stachys sylvatica)

Echte Nelkenwurz (Geum urbanum)

Ross-Minze (Mentha longifolia)

Waldmeister (Galium odoatum)

Klebriges Labkraut (Galium aparine)

Gamander-Ehrenpreis (Veronica chamaedrys)

Wiesen-Pippau (Crepis biennis)

Wiesen-Schaumkraut (Cardamine pratensis)

Breitblättriges Knabenkraut (Dactylorhiza majalis)

Fleischfarbenes Knabenkraut (Dactylorhiza incarnata)

Pilze

Birkenporling (Fomitopsis betulina)

Flacher Lackporling (Ganoderma applanatum, syn. Ganoderma lipsiense)

Tiere:

Europäischer Biber (Castor fiber))

Schneeballblattkäferlarve (Pyrrhalta viburni)

Schrotbock (Rhagium inquisitor)

Borkenkäfer (Scolytinae)

Larve einer Schaumzikade(Familie Aphohoridae) in Schaumhülle („Kuckucksspeichel“)

Zilp-Zalp ,Weiden-Laubsänger, (Phylloscopus collybita)

Buchfink (Frinilla coeleps)

Eichelhäher (Garrulus glandarius)

12. Juni 2021 Völlkofen

Treffpunkt: Völlkofen, Grillhütte 10.00h

3. Juli 2021 Naturschutzzentrum Wilhelmsdorf

Treffpunkt am Naturschutzzentrum Wilhelmsdorf

Das Naturschutzzentrum liegt am nördlichen Rand von Wilhelmsdorf

Naturschutzzentrum Wilhelmsdorf im Pfrunger-Burgweiler Ried

Frau Margit Ackermann, Diplombiologin und Naturpädagogin und seit 2006 Mitarbeiterin des Naturschutzzentrums Wilhelmsdorf, gibt uns einen Einblick in Ziele und Aufgaben des Naturschutzzentrums und ihrer Arbeit. Das Zentrum wurde 1994 unter der privaten Trägerschaft des Schwäbischen Heimatbundes e. V. gegründet und mit Unterstützung des Landes Baden-Württemberg und der Gemeinde Wilhelmsdorf als Informationszentrum eingerichtet. 2016 übernahm die Stiftung Naturschutz Pfrunger-Burgweiler Ried die Trägerschaft. Neben den pädagogischen Aufgaben – Information der Öffentlichkeit Besucherangebote – geht es um Beobachtung und Dokumentation von Flora und Fauna, Durchführung von Artenschutzmaßnahmen, Organisation und Koordination von Pflegemaßnahmen einschließlich der extensiven Beweidung sowie der Flächenverwaltung und Verkehrssicherung. Derzeit läuft ein Verfahren zur Anerkennung des Pfrunger-Burgweiler Rieds als UNESCO-Biosphärenreservat.

Entstehungsgeschichte des Pfrunger-Burgweiler Rieds

In dem 2012 erstellten Ausstellungs- und Veranstaltungsgebäude versammeln wir uns vor einem Luftbild, in dem das Pfrunger-Burgweiler Ried mit Blick nach Süden – Bodensee und Alpen im Hintergrund – zu sehen ist. Vor 20.000 Jahren, beim Hochstand der letzten Kaltzeit  (Würm-Kaltzeit) füllte eine Zunge des Rheingletschers das Tal zwischen den heutigen Orten Wilhelmsdorf und Ostrach. Beim Rückzug des Gletschers blieb am nördlichen Rand eine Endmoräne zurück (Äußere Würm-Endmoräne). In Höhe des heutigen Wilhelmsdorf kam es vor etwa 15.000 Jahren zu einem Stillstand der Gletscher-Rückentwicklung, eventuell auch einem weiteren Gletschervorstoß. In jedem Fall befand sich dort längere Zeit ein Gletscherrand und es lagerte sich Moränenmaterial ab (Innere Würm-Endmoräne). Das Schmelzwasser sammelte sich in dem Becken bis zur Endmoräne beim heutigen Ostrach, die den Abfluss nach Norden behinderte. Nach weiterem Abschmelzen wurde der Abfluss nach Süden durch die südliche Endmoräne blockiert, sodass ein Eisstausee erhalten blieb, in dem sich zunächst feines Tonmaterial ablagerte und den See nach unten abdichtete. Der Zufluss kalkreichen Wassers aus den umgebenden Höhenzügen, die teilweise aus interstadialen kalkreichem Nagelfluh aufgebaut sind, führte zur Ablagerung einer Seekreideschicht, das einsetzende Wachstum von Planktonalgen ließ eine erste Ablagerung mit hohem Anteilan organischen Material entstehen, die wegen ihrer braungrünen Farbe und der elastischen Eigenschaften als Lebermudde bezeichnet wird. Das mit der Klimaerwärmung zunehmende Pflanzenwachstum lieferte das Material für weitere Sedimente mit hohem organischem Anteil und Niedermoortorf. Im Laufe der Jahrtausende wurde der See dadurch immer flacher und aufgrund geringen Nährmineralgehalts und der hohen Regenmengen konnten sich auf den verlandenden Bereichen erste Torfmoose ansiedeln. Damit begann die Entwicklung zum Hochmoor.

Perspektivansicht des Pfrunger Zungenbeckens, des Rotach-Zungenbeckens und des westlichen Teils des Altshausener Beckens. Neben der Äußeren (blau gestrichelte Linie) und der Inneren Würm-Endmoräne (rote gestrichelte Linie) erkennt man auch eine Reihe von lokalen Moränenrücken (weiß gestrichelt). Das Pfrunger Zungenbecken entstand im Stadium der Äußeren Würm-Endmoräne. Weitere, jedoch wesentlich kleinere Zungenbecken des Stadiums der Äußeren Würm-Endmoräne entstanden bei Ilmensee (a) und im Altshausener Becken (b, c, d, e) Blickrichtung von Südosten nach Nordwesten (siehe Nordpfeil).

Alt: Altshause, Ebb: Ebersbach, Ebw: Ebenweiler, Ech: Echbeck, Fle: Fleischwangen, Fro: Fronhofen, Gug: Guggenhausen, Has: Hasenweiler, Hoß: Hoßkirch, Ill: Ilmensee. Kön: Königseggwald, Ost: Ostrach, Wal: Waldbeuren, Wil: Wilhelmsdorf

Der Illmensee und der Lengenweiher gehen auf Toteislöcher zurück, ursprünglich vom Gletscherrand abgetrennte Eispartien, die zunächst von Sediment überdeckt wurden und dann nach Abschmelzen wassergefüllte „Löcher“ bildeten.

Die Entwicklung bis zum heutigen Landschaftsbild wurde sehr stark durch menschliche Einflüsse geprägt. Nach der Gründung der Gemeinde Wilhelmsdorf durch württembergische Pietisten (Herrnhuter Brüdergemeinde) unter der Obhut des württembergischen Königs Wilhelm I. im Jahre 1824 wurde mit der Entwässerung und Kultivierung des Moorgebietes begonnen. Im 20. Jahrhundert wurde kurze Zeit ein intensiver  industrieller Torfabbau betrieben. Diese Torfgruben sind bis heute als offene Wasserflächen erhalten.

Exkursion zum Hochmoorrest Eulenbruck

Unser Exkursionsweg -grün- (Karte aus einem Flyer des Naturschtzzentrums Wilhemsdorf)

Um einen Eindruck einer typischen Hochmoorlandschaft zu bekommen unternehmen wir eine Exkursion zum Eulenbruck. Wir folgen zunächst dem Asphaltssträßchen Richtung Lindenhof und biegen dann links ab und noch einmal links in den Kiefern-Moorwald mit einem dichten Unterwuchs aus Heidelbeeren (grüne Sprossachsen), an einigen Stellen auch Rauschbeeren (braune Sprossachsen). An einigen besonders feuchten Stellen kann man erste Ansiedlungen von Torfmoosen beobachten. Die Torfmoos-Pflänzchen haben einen typischen Aufbau aus Hauptachse (Stamm) und zu mehreren angeordneten dicht mit Blättchen besetzten Seitentrieben . Einige Seitenästchen laufen am Stämmchen herab und verleihen diesem eine dochtartige Struktur (Abb.).

Über einen Steg erreichen wir eine Aussichtsplattform, die den Blick auf einen relativ intakten Hochmoorbereich freigibt. Die geschlossene Torfmoosdecke, die wie ein Schwamm Wasser aufsaugt und festhält, wächst kontinuierlich nach oben, während die unteren Teile absterben und nur sehr langsam abgebaut werden. Dadurch entsteht kontinuierlich ein Zuwachs an Torf, in unserem Klima etwa 1 mm pro Jahr. Das bedeutet, dass in den 10.000 Jahren seit dem Ende der letzten Eiszeit maximal 10 m Torf gebildet werden konnte. Tatsächlich haben Bohrungen gezeigt, dass die Torfschichten unter dem Eulenbruck diese Mächtigkeit haben.

Durch einen Versuch demonstriert Margit Ackermann das schwammartige Wasseraufnahmevermögen von Torfmoosen. Aus einer Handvoll Torfmoose ausgepresstes Wasser wird in Sekundenschnelle wieder aufgenommen. Durch Auspressen gewinnt man allerdings nur einen Teil des in Torfmoosen gespeicherten Wassers, der größere Teil ist in einem Netz aus toten Wasserspeicherzellen in Blättchen und Stämmchen gespeichert, insgesamt das bis zu 30fache des Trockengewichts (Abb.). Da das gespeicherte Wasser nur aus dem Regen stammt, enthält es sehr wenig Mineralstoffe. Zudem haben Torfmoose die Fähigkeit, Mineralstoff-Kationen (K*; Ca++ u.a.) gegen H+-Ionen auszutauschen. Dadurch wird das Wasser stark abgesäuert. Wir messen in dem ausgepressten Wasser einen pH-Wert von ca. 4,0.

Torfmoose sind Regenwasserspeicher, sie ermöglichen die Hochmoorbildung. a) Torfmoospflänzchen, Habitus, b) Stämmchen quer mit Wasserspeicherzellen, Blättchen: c) Querschnitt und d) Aufsicht, e) räumliche Darstellung

Für Gefäßpflanzen sind Hochmoore deshalb ein sehr extremer Standort, weshalb hier nur wenige charakteristische Arten vorkommen. Die Heidekrautgewächse Moosbeere und Rosmarinheide können mithilfe ihrer Mykorrhizapilze und aufgrund ihres langsamen Wachstums hier gedeihen. Der Rundblättrige Sonnentau bessert seine Stickstoffversorgung durch Insektenfang und -verdauung auf (Carnivore Pflanze).

Blick von der Plattform Eulenbruck in den Hochmoorbereich mit Rundblättrigem Sonnentau (Drosera rotundifolia), Torfmoosen und Ranken der Moosbeere (Vaccinium oxycoccus) (Foto Rostan 25.7.2021)
Aufbau eines Hochmoors in Mitteleuropa

Am Birkenaufwuchs und der stark aufkommenden Besenheide kann man erkennen, dass der Wassergehalt des Hochmoores einen kritischen Punkt erreicht hat. Die beiden letzten sehr trockenen Sommer konnten durch den diesjährigen bisher ziemlich regenreichen Sommer noch nicht ausgeglichen werden. Die Austrocknung bedeutet, dass die Zersetzung der organischen Materialien unter Sauerstoffeinfluss rascher voranschreitet . Das bedeutet nicht nur, dass das Moor nicht mehr in die Höhe wächst, sondern dass auch die tieferen Schichten abgebaut werden und der so über Jahrhunderte gespeicherte Kohlenstoff wieder als CO2 freigesetzt wird. Dies ist der Hauptgrund dafür, dass man angesichts der CO2-bedingten Klimaerwärmung Hochmoore unter besonderen Schutz gestellt hat.

Benennung verschiedener Feuchtbiotope

Insekten

Zurück am Naturschutzzentrum werden wir von schwärmenden Honigbienen empfangen. Wir entdecken eine Schwarmtaube an einem der Findlinge, die vor dem Naturschutzzentrum aufgestellt wurden. Der mit dem Naturschutzzentrum zusammenarbeitende Imker und Lehrbeauftragter der PH Weigarten, Herr Guggolz,wird informiert.

Nach wir eine kleinen Getränkepause und beschäftigen wir uns dann mit der Gruppe der Insekten, die aufgrund der zahlreichen Berichte über den dramatischen Rückgang ihrer Arten und Individuen im besonderen Interesse der Öffentlichkeit steht. Der starke Rückgang der Insekten-Biomasse ist mittlerweile so auffällig, dass er auch von Laien und der Entomologie fernstehenden Personen nicht mehr übersehen werden kann. Der starke Rückgang des Singvogelbestandes und insbesondere der Fledermäuse dürfte eine direkte Folge dieser Entwicklung sein. Auch die Ursachen sind nicht wirklich ein Geheimnis. Da ist erst einmal der hohe Pestizideinsatz in der Landwirtschaft zu nennen, andererseits aber auch der Verlust geeigneter Lebensräume mit einer vielseitigen Flora. Mit Blumenstreifen an Ackerrändern versucht man, einen Ausgleich zu schaffen. Da diese aus Saatmischungen stammenden Pflanzen häufig exotische, oft einjährige Arten enthalten stehen sie allerdings in der Kritik. Auch die Nähe zu den gespritzten Äckern und der Mangel an Brutmöglichkeiten und Nahrungspflanzen für die Larven der Insekten mindert  den ökologischen Wert der bunten Ackerrandstreifen.

Eine wichtige Voraussetzung dafür, dass Insektenschutzmaßnahmen in der Öffentlichkeit breite Zustimmung finden, ist eine bessere Kenntnis der Insekten. Deshalb sind sie ein wichtiges Thema für den Biologieunterricht.

Dass man mit dem Thema durchaus Begeisterung wecken kann, beschreibt Dave Goulson in seinem Buch „Die seltensten Bienen der Welt“: „Es war ein sonniger Nachmittag gegen Schuljahresende im Juni 2009, und ich ging mit der Klasse meines ältesten Sohns Finn an der Newton Primary School Dunblane auf Insektenjagd….. Als wir am Wald waren, reichte ich den eifrigen Sieben- und Achtjährigen Netze und sonstiges Material und zeigte ihnen, wie man sie verwendet. … Einen Wiesenkescher zu öffnen, ist immer eine spannende Sache – wie bei den hübsch verpackten Geschenken unter dem Weihnachtsbaum weiß man nie, was Wunderbares drinsteckt. Unter lautem Ah und Oh sahen die Kinder zu, wie Scharen winziger Tiere – Ameisen, Spinnen, Wespen, Käfer, Fliegen und Raupen – aus dem Netz krabbelten, flogen und hüpften. Ich zeigte ihnen, wie man die kleinsten, empfindlichsten von ihnen in einen Exhaustor saugt. Dann verteilte ich eine Handvoll Becher, in denen jeder seinen Fang sammeln konnte, und die Kinder schwärmten aus, rannten durchs Unterholz, wedelten, kescherten und saugten nach Herzenslust, die Augen vor Aufregung weit aufgerissen. …“. Diese Beschreibung stammt aus dem Jahre 2009. Die Ergebnisse unserer Fangversuche waren deutlich schlechter – ein bisschen lag das vielleicht daran, dass die Witterung ziemlich schwül und wir durch unsere Exkursion schon etwas erschöpft waren, aber nicht nur. Ich habe mit Studierenden der PH Weingarten hier in Wilhelmsdorf zum ersten Mal 2017 Wieseninsekten gefangen und da waren unsere Ergebnisse deutlich vielseitiger. Auch die Fänge der parallel arbeitenden Wasserinsekten-Fanggruppe waren vergleichsweise dürftig (vgl. Artenliste).

Mittlerweile ist der Imker zu seinen Bienen gekommen und dadurch ergibt sich die Gelegenheit, aus erster Hand Informationen über dieses wichtigste Nutztier aus der Klasse der Insekten zu bekommen.

Die über 40.000 (immer noch?) mitteleuropäischen Insektenarten zu kennen, ist unmöglich, aber nicht so schwierig ist es, die wichtigsten 15-20 Ordnungen einheimischer Insekten zu erkennen und dann mithilfe eines Bestimmungsbuches auch einige Arten herauszufinden. Mir hilft dabei oft das mittlerweile leider schon längere Zeit vergriffene „Parays Buch der Insekten“ von Michael Chinery. Die über 2300 in diesem Buch mit sehr guten, treffenden Zeichnungen dargestellten Arten stellen nach meiner Erfahrung eine ausgezeichnete Auswahl dar, die zwar ursprünglich für Großbritannien getroffen wurde, aber auch für Mitteleuropa gilt.

Für Unterrichtszwecke hat Ulrich Kattmann eine Einteilung der Insekten in „Elfen, Ritter und Gaukler“ vorgeschlagen (vgl. Abb.)

Verwandtschaftsgruppen der Insekten

Die systematische Einteilung der Insekten nach Verwandtschaftsgruppen unterscheidet

  • ursprünglich flügellose Ordnungen, zu denen zum Beispiel Springschwänze und Silberfischen gehören,
  • Insekten mit unvollkommener Verwandlung, bei denen zwischen Larvenstadium und voll ausgebildeten Insekt (Imago) kein Puppenstadium eingeschoben ist, (zum Beispiel Libellen, Heuschrecken und Schaben) und
  • Insekten mit vollkommener Verwandlung (Ei – Larve – Puppe – Imago), zu denen zum Beispiel Käfer, Schmetterlinge und Hautflügler gehören.

Die meisten Bäume des Moorwaldes sind  Wald-Kiefern (kenntlich an der braunrötlichen Färbung der oberen Stammbereiche), dazwischen stehen aber auch immer wieder Moor-Kiefern (mit durchgehend braunschwärzlichen Stämmen). Außerdem gedeihen hier Moor-Birken, die sich von Hänge-Birken durch die aufrechteren Zweige und die Behaarung der jungen Triebe unterscheiden.

Liste der beobachteten Pflanzenarten, chronologisch geordnet

(zusammengestellt von Darius Targan)

NameWissenschaftlicher Name
Echtes MädesüßFilipendula ulmaria
Echter BaldrianValeriana officinalis
Gewöhnlicher BlutweiderichLythrum salicaria
Sumpf-HornkleeLotus pedunculatus
HeidelbeereVaccinium myrtillus
RauschbeereVaccinium uliginosum
RosmarinheideAndromeda polifolia
Hain-GilbweiderichLysimachia nemorum
Wiesen-WachtelweizenMelampyrum pratense
Gewöhnliche MoosbeereVaccinium oxycoccos
Rundblättriger SonnentauDrosera rotundifolia
Roter FingerhutDigitalis purpurea
Kohl-KrazdistelCirsium oleraceum
Moor-Kiefer; Spirke, MoorspirkePinus mugo ssp. rotundata
Wald-KieferPinus sylvestris
Moor-BirkeBetula pubescens
Rasen-SchmieleDeschampsia cespitosa
Wiesen-LieschgrasPhleum pratense
Flutender SchwadenGlyceria fluitans
Wald-SimseScirpus sylvaticus
Gewöhnlicher DornfarnDryopteris carthusiana
TorfmoosSphagnum

Liste einiger beobachteter Tierarten

Säugetiere

Europäischer Biber  (Castor fiber) -Biberausstiieg – Biberrutsche – am Weg begleitenden Bach

Vögel

Goldammer

Buchfink

Mönchsgrasmücke

Rabenkrähe

Insekten an Land

Brennnesselzünsler (Anania hortulata, Syn.: Eurrhypara hortulata): eingefaltete Brennnesselblätter lassen erkennen, dass sich hier Raupen eingesponnen hatten.

Landkärtchen (Araschnia levana) : Sommergeneration des Falters und Raupe

Kleiner Fuchs (Aglais urticae)

Brauner Waldvogel, Schornsteinfeger (Aphantopus hyperantus)

Grasmotte (Fam. Crambidae – Rüsselzünsler)

Kohlweißling (Pieris brassicae)

Baumwanze (Fam. Pentatomidae)

Kugelwanze (Coptosoma scutellata)

Schaumzikadenlarve (Fam. Cercopidae)

einige Schwebfliegen (Fam.Syrphidae, z. B. Episyrphus balteatus)

Raubfliege (Fam. Asselidae) mit Beute

Wasserinsekten und andere Wassertiere

Kleinlibellenlarven

Eintagsfliegenlarven

Büschelmückenlarven, „Glasstäbchen“ (Fam. Chaoboridae)

Zuckmückenlarve (Fam. Chironomidae)

Rückenschwimmer (Notonecta glauca)

Muschelkrebse (Ostracoda)

Süßwassermilben (Hydrachnidiae)

24. Juli 2021 Naturschutzzentrum Wilhelmsdorf

Die Anfahrt nach Wilhelmsdorf wird durch einige Gewitter und lokale Starkregen beeinträchtigt, wodurch einige Teilnehmer*innen abgeschreckt werden.

Der Abend beginnt im Unterrichtsraum des Naturschutzzentrums und er steht ganz unter dem Thema „Fledermäuse“. Diese außergewöhnliche Verwandtschaftsgruppe fliegender Säugetiere ist ein besonderer Schwerpunkt in der Arbeit des Naturschutzzentrums Wilhelmsdorf. Es geht dabei nicht nur um den Schutz und die Dokumentation der im NSG Pfunger-Burgweiler Ried vorkommenden Arten sondern auch um die Vermittlung von Wissen und den Abbau von falschen Informationen über die Flatterttiere. Frau Margit Ackermann führt uns in abwechslungsreicher und spannender Form in die Biologie der Fledermäuse ein. Dabei kommen verschiedene Spiele (Memory, Puzzle, Zuordnungsspiele), Anschauungsmaterial, ein Video und eine PowerPoint Präsentation zum Einsatz. Schließlich werden vier „Säuglinge“ der Zwergfledermaus (Pipistrellus pipistrellus)aus einer mit Tüchern abgedunkelten Box geholt und mithilfe einer Spezial-Minipipette und angerührter Milch für Hundewelpen gefüttert. Vor der Fütterung werden die Kleinen mithilfe einer Wärmflasche aufgewärmt um sie beweglicher zu machen.

Fütterung eines Zwergfledemaus-Babies (Foto S. Brendle)

Zum Abschluss – es ist mittlerweile 21:15 Uhr und beginnt langsam dunkel zu werden – wollen wir einige Fledermäuse in freier Natur erleben. Dabei helfen Fledermaus-Detektoren, durch welche die Ultraschall-Echolot-Signale der Fledermäuse in für uns hörbare Laute übertragen werden. In einem der beiden uns zur Verfügung stehenden Geräte werden nicht nur die Töne übersetzt, im Display wird auch noch ein Sonagramm  (auch Sonogramm genannt) dargestellt, das den zeitlichen Verlauf der Lautäußerungen gegen die Frequenz aufzeichnet. Bei manchen Geräten wird auch noch die Lautstärke durch unterschiedliche Farben dargestellt.

Wir gehen vom Unterrichtsraum zum Bürogebäude des Naturschutzzentrums, an dessen Wänden verschiedene Fledermauskästen bzw. Fledermausbretter aufgehängt sind. Kaum stehen wir davor, wird schon die erste Fledermaus beobachtet, die Margit Ackermann mit dem Detektor als Zwergfledermaus identifiziert. Danach können wir längere Zeit einen großen Abendsegler am Himmel beobachten und mit dem Detektor hören. Wir wandern dann über die Straße und einen Weg zu einem größeren See und dort hören und sehen wir Zwergfledermaus, Wasserfledermaus und Großen Abendsegler, die meist dicht über die Wasseroberfläche fliegen.

Auf dem Rückweg taucht überraschend ein Biber vor uns auf und verschwindet später mit großem Platsch im Wasser.

Pflanzenfamilien erkennen

Je nach Zählung gibt es in Mitteleuropa mindestens 3000 verschiedene Pflanzenarten. Aber auch wenn viele davon selten sind oder nur in ganz bestimmten Gebieten vorkommen, so ist erscheint dem Laien auch die Anzahl von verschiedenen Pflanzenarten in der näheren Umgebung ziemlich unüberschaubar. Ganz allgemein gilt, dass man sich viele unterschiedlichen Objekte leichter merken kann, wenn man sie in Gruppen einteilt. Manche Pflanzenbestimmungsbücher nutzen hierfür zum Beispiel die Blütenfarben, andere Einteilungsmöglichkeiten sind der Lebensraum oder der Blühzeitraum. Eine Möglichkeit, die auch von Botanikern genutzt wird, ist die Einteilung nach der Verwandtschaft.

Die ersten Lebewesen auf der Erde sind vor mehr als 3 Milliarden Jahren entstanden. Alle heutigen Erdbewohner stammen von Ihnen ab und sind deshalb miteinander ver­wandt, aber nicht in gleichem Maße: Es gibt nähere und entferntere Verwandt­schaften. Nahe verwandte und deshalb meist ähnliche Arten fasst man zu Gattun­gen, ähnliche Gattungen zu Familien zusammen, diese dann weiter zu Ordnun­gen, Klassen und Abteilungen.

Beispiel für die systematische Einordnung der Echten Nelkenwurz

Abteilung:                 Samenpflanzen

Klasse:                      Bedecktsamer                      Nacktsamer

Ordnung:                  Rosenartige                         Magnolienartige      …

Familie:.                    Rosengewächse                 Brennnesselgewächse     …

Gattung:                    Nelkenwurz                          Erdbeere       …

Art:                             Echte Nelkenwurz             Bach-Nelkenwurz  …

Für das Bestimmen und Wiedererkennen von Pflanzen sind die Familien, in manchen Fällen auch die Gattungen, besonders wichtig und hilfreich. Wenn man die acht in den Kästchen vorgestellten, in der heimischen Flora häufigen Familien wiedererkennt, wird der Einstieg in die Artenkenntnis der Pflanzen leichter.

Quellen:

Beran, F. (2002): Die Entstehung des Natur- und Lebensraumes am nördlichen Bodenseeufer und um Oberteuringen. In: Gemeinde Oberteuringen (Hrsg., 2002): Teuringen. Ein Streifzug durch die Jahrhunderte, S.13-23.

Elenberg, H. (1991): Zeigerwerte der Gefäßpflanzen (ohne Rubus). In: Ellenberg, H. et al. (1991): Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica XVIII. Göttingen: E. Goltze

und die Materialien zu den früheren Exkursionen für die PH Weingarten ab 2016

Exkursionsangebot für die PH Weingarten, SS 2017

LINK-NAME
Exkursionsangebot im Sommersemester 2017 im Rahmen der Veranstaltung

Biologie an außerschulischen Lernorten – Exkursionsdidaktik – regionale Lebensräume & Lernorte

Arbeitsprogramm SS 2017:

27.04. – 13.00 – 14.00Vorbesprechung der VeranstaltungH. Weitzel
28.04.

 

14.15 – 15.45

Vorbereitung der Exkursion „Adelsreuter & Weißenauer Wald“ / Wald und Forst als ExkursionszieleW. Probst
29.04.

 

10.00-17.00

Exkursion Adelsreuter & Weißenauer WaldW. Probst
Freitag, 05.05. – 13.00 – 14.00Einführung zur Didaktik an außerschulischen Lernorten 1H. Weitzel
Mittwoch, 10.5. – 13.00 – 14.00Einführung zur Didaktik an außerschulischen Lernorten

 

2

H. Weitzel
Fr 12.05.

 

14.00-17.30

Exkursion Rotach in Oberteuringen 1/2W. Probst
Fr. 19.05.

 

14.00 – 17.30

Exkursion Honigbienen / PH SchulgartenR. Mohr
So 21.05.

 

10.00-17.00

Exkursion Dornacher Ried,Häckler WeiherW. Probst
Mittwoch, 31.5. – 13.00 – 14.00Einführung zur Didaktik an außerschulischen Lernorten

 

3

H. Weitzel
Donnerstag, 01.06. – 14.15 – 15.45Moore, Riede, Brüche, Sümpfe als ExkurionszieleW. Probst
Fr 02.06.

 

14.00-17.30

Exkursion Eriskircher Ried 1/2W. Probst
geändert!

 

Freitag, 16.06. – 14.15 – 15.45

Besprechung & Bearbeitung der ExkursionsaufgabenW. Probst
Freie TerminwahlVeranstaltung zur freien Wahl aus Angebot Nabu Weingarten oder lokalem Nabu (Nachweis durch Unterschrift und Dokumentation)NABU/BUND
So 18.6.

 

10.00-17.00

Exkursion Hepbach-Leimbacher Ried, Heckrinder,Raderacher DrumlinlandschaftW. Probst
Freie TerminwahlVeranstaltung zur freien Wahl aus Angebot Nabu Weingarten oder lokalem Nabu (Nachweis durch Unterschrift und Dokumentation)NABU/BUND
Freie TerminwahlVeranstaltung zur freien Wahl aus Angebot Nabu Weingarten oder lokalem Nabu (Nachweis durch Unterschrift und Dokumentation)NABU/BUND
Sa 01.07.

 

10.00-17.00

Exkursion Pfrunger-Burgweiler RiedW. Probst
Fr 14.07.

 

14.00-17.30

Exkursion NSG Altweiherwiesen,Wammeratswatt oder Hangwald über Flappachweiher 1/2W. Probst

kurzfristige Terminänderungen sind möglich!

Übersicht über die Exkursionsorte

Übersicht über die Exkursionsorte
Übersicht über die Exkursionsorte

 Adelsreuter und Weißenauer Wald (29.04.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016 )

TreffpunktAppenweiler_bearbeitet-1

Treffpunkt: Wanderparkplatz bei Appenweiler (entspricht 2016)

Thematische Schwerpunkte: Lebensform Baum, ökologische Ansprüche von Waldbäumen, verschiedene Waldgesellschaften, Lebensformen und Überwinterung von Pflanzen, Lebensraum Wassergraben

Bäume

Das Lebewesen Baum

Wenn man eine Pflanze als „Baum“ bezeichnet, meint man damit eine bestimmte Lebensform. Sie hat nichts zu tun mit der verwandtschaftlichen bzw. systematischen Zugehörigkeit der Pflanzenart, wenngleich es bestimmte Familien gibt, bei denen besonders viele Arten der Lebensform „Baum“ angehören. In unserer heimischen Flora sind dies zum Beispiel alle Vertreter der Familie Buchengewächse (Fagaceae).

Aufbau einer verholzten Zellwand
Aufbau einer verholzten Zellwand (Formelbild nach http://www.chem.cmu.edu/groups/washburn/res-lignin.html )

Bäume sind Gehölze, das heißt, ein wesentlicher Teil ihrer Gewebe besteht aus Zellen mit verholzten Zellwänden, also Wänden, in die zwischen Cellulose  und Hemicellulosen Lignin eingelagert ist. Dies bedeutet einen enormen Stabitlitätszuwachs. Diese Stabilität erlaubt den Bäumen sehr hoch  zu wachsen – manche über 100 m –, und sehr alt zu werden – über 1000 Jahre, selten bis 5000 Jahre.

Baumwachstum-2
Schematische Darstellung des Baumwachstums: Durch Aktivität von Gipfelregion und Kambium wird jedes Jahr ein Zuwachskegel gebildet.

Beim Wachstum der Bäume unterscheidet man Spitzenwachstum und Dickenwachstum der Sprossachsen. Wenn das Bildungsgewebe an der Sprossspitze  das einzige Bildungsgewebe ist, ist es auch für die endgültige Dicke der Sprossachse verantwortlich. Beispiele für solches auschließlich primäres Dickenwachstum sind Grashalme und Palmenstämme. Beim sekundären Dickenwachstum gibt es neben dem Bildungsgewebe an der Sprossspitze ein sekundäres Bildungsgewebe, das einen Zylinder in der Sprossachse bildet und nach außen und innen Zellen abgibt. Alle Stämme, Äste, Zweige und Wurzeln können dadurch immer dicker werden.

Bei lang anhaltenden Dickenwachstum kommen die außerhalb des Meristemzylinders liegenden Gewebe mit dem Wachstum nicht nach und reißen auf. Bäume haben verschiedene Wege eingeschlagen, um ihre Stämme und Äste durch  Schutzschichten nach außen zu sichern. Primär werden junge Zweige durch eine Epidermis, eine Schicht dicht aneinanderliegender Zellen, abgeschlossen. Sekundär bildet sich in  darunter liegenden Rindenschichten eine Schicht aus verkorkten Zellen (Periderm).

Der doppelte Irrtum von Plauens "Vater und Sohn"
Der doppelte Irrtum von Plauens „Vater und Sohn“

Wenn diese Schicht ständig  aus einem eigenen Bildungsgewebe, dem Phellogen, weiterwächst, bildet sich eine glatte Rinde, wie sie für Buchen typisch ist. In den meisten Fällen wird jedoch die äußere Peridermschicht bei weiterem Dickenwachstum wieder geprengt und es bilden sich in tieferen Rindenschichten immer wieder neue Korkkambien und neue Periderme. Die abgestorbenen äußeren Schichten werden Borke genannt. Je nach Anlage der Phellogene unterscheidet man Schuppenborke (häufigster Fall), Netzborke oder Ringelborke.

Borkenbildung
Borkenbildung

Bäume berechnen

Einfache Ermittlung der Höhe: Am einfachsten lässt sich die Baumhöhe mit einem Stock in Armlänge ermitteln . Ebenso einfach ist das Umklappverfahren: der Baumwipfel wird über den lang gestreckten Arm mit einem Stock angepeilt. Die Länge des Stocks ist im Prinzip beliebig. Dann dreht man den Stock in die Horizontale und lässt einen Helfer vom Fuß des Baumes senkrecht zur eigenen Blickrichtung so weit gehen, bis er mit dem Ende des Stocks in Linie ist. Die Entfernung Beobachter-Baum ist dann die Baumhöhe. Mittlerweile gibt es auch Baumhöhenmesser als Apps.

Volumenberechnung eines Baumstammes
Volumenberechnung eines Baumstammes

Das Volumen eines Baumstammes hängt von seinem Umfang und seiner Höhe ab. Ein Zylinder hat das Volumen Grundfläche mal Höhe, ein Kegel das Volumen 1/3 Grundfläche mal Höhe. Für Bäume in einem Hochwald unserer Breiten kann man nährungsweise die Volumenformel V = ABh · h annehmen.  ABh ist dabei die Querschnittsfläche in Brusthöhe (1,3 m).

Die Querschnittsfläche A eines Baumes steht in direkter Beziehung zu seinem Durchmesser d und dieser zu seinem Umfang u:

u =  π·d; d =u/π ;                                  A = πr2 =  πd2 /4  =  u2/4π

Daraus ergibt sich für das Volumen

V = u2 h/8π

Da 8π etwa 25 ist, gilt für einen Baum von 25 m Höhe die einfache Bezeihung

V = u2 (für u in m und V in m3)

Für jeden Meter, den ein Baum höher oder niedriger als 25 m ist, muss man 3% des Volumens zufügen oder abziehen. Förster arbeiten stattdessen  mit der sog. „Försterformel“:

V =  d2/1000 ( für d in cm und V in m3)

Vom Volumen zur Masse und zum gebundenen CO2

Die Holzmasse ergibt sich aus Volumen und Dichte.

BaumartFichteKieferBucheEicheEsche
Dichte in g/cm3 bzw. t/m30,470,520,690,670,69

Die Hälfte der Holzmasse entspricht etwa der Masse des enthaltenen Kohlenstoffs. 1 t C entspricht  3,67 t CO2

Götterbaume

Zu Bäumen gehören die ältesten und die größten Lebewesen und es ist deshalb nicht verwunderlich, dass ihnen etwas Numinöses anhaftet. Götter haben ihre Bäume: Stein-Eiche: Zeus, Ölbaum: Athene, Lorbeer Apoll, Myrte: Aphrodite; Stiel-Eiche: Thor, Hänge-Birke: Freya, Hollunder: Frau Holle = Frigg (germanische Muttergöttin),Ygdrasil = Weltenesche der Germanen. Auch bei den Kelten schrieb man Bäumen Übernatürliches zu. Aus solchen keltischen Wurzeln wurde in neuerer Zeit ein Baumhoroskop entwickelt, das auch als „Keltischer Baumkreis“ bekannt ist. Grundlage ist dr sog. Keltische Baumkalender, der jedem Datum eine Baumart zuordnet. Ähnlich wie bei den astrologischen Tierkreiszeichen wird  versucht, jedem Baum bestimmte Menscheneigenschaften zuzuordnen (Apfelbaum = die Liebe, Hasel = das Außergewöhnliche usw.). Der deutsche Name „Götterbaum“ wurde übrigens dem ursprünglich ostasiatischen Baum Ailanthus altissima gegeben, der 1740 nach Europa eingeführt wurde und sich heute – vor allem in Städten – als Neophyt stark ausgebreitet hat. Der Name soll daher kommen, dass er seine Äste weit in den Himmel reckt – aber welcher Baum tut das nicht?

Kletterbäume

Auch für Kinder und Jugendliche haben Bäume einen besonderen Reiz, vor allem, weil man auf Bäume klettern und Baumhäuser bauen kann (konnte??), weil man auf gefällten Baumstämmen balancieren und wippen kann und weil man aus Baumrinde Boote schnitzen kann. Man kann also davon ausgehen, dass man mit dem Thema Baum bei SchülerInnen – mindestens im Vergleich zu anderen botanischen Themen – ganz gut ankommen kann. Einige Möglichkeiten: Bäume ertasten, Bäume vermessen und berechnen, Borken- bzw. Rindenabdrucke herstellen, Stoffkreislauf nachreisen, Alter bestimmen, Totholz und tote Bäume untersuchen.

Wälder

Was sind Wälder

Die Vegetation prägt das Aussehen einer Landschaft, ihre Physiognomie. Grob kann man unterscheiden zwischen Wäldern, Gebüschen, Zwergstrauchbeständen, Grasländern und anderen krautigen Vegetationsformen (Steppen, Prärien).

Flora und Vegetation

Einer der ersten, der versucht hat, die Vegetation der Erde nach ihren Lebensformen, also ihrem Aussehen, in Vegetationstypen einzuteilen, war Alexander von Humboldt (1801-1803: Ideen zu einer Geographie der Pflanzen)

Zusammenhang zwischen Vegetationstyp und Lebensformen
Zusammenhang zwischen Vegetationstyp und Lebensformen

Als „Wälder“ bezeichnet man Pflanzengesellschaften, die durch mehr oder weniger dicht stehende Holzgewächse – Bäume – ausgezeichnet sind. Für die weitere Untergliederung spielt eine Rolle, ob es sich um laubwerfende oder immergrüne Wälder handelt und wie dicht die Bäume stehen  (Begriff des Offenwaldes, Savannen als Übergänge zu Grasländern). Die Nutzung der Wälder durch den Menschen hat in vielen Gebieten der Erde zu einer sehr starken Veränderung der ursprünglichen Waldvegetation (der Urwälder) geführt. Oft sind im Laufe der jahrtausendelangen Nutzung Wälder sogar vollständig verschwunden (Libanon, Vorderer Orient). Auch in Mitteleuropa hat die unregulierte Waldnutzung im Mittelalter zu einer sehr starken Degradation der Wälder geführt. Als Reaktion begann man im  Im 18. Jahrhundert mit der gezielten, auf dauerhaften Ertrag angelegten Forstwirtschaft. In diesem Zusammenhang wurde von Hans Carl von Carlowitz, Oberberghauptman des Erzgebirges, 1713 zum ersten Mal der Begriff der Nachhaltigkeit verwendet. Er besagt, dass man dem Wald nicht mehr Holzmasse entnehmen soll  als gleichzeitig nachwächst. Heute wird dieser Begriff auf den ganzen Bioplaneten Erde angewendet.

Mitteleuropas Wälder

Laubwerfende Wälder der nördlichen gemäßgten Klimazone mit typischen Klimadiagrammen
Laubwerfende Wälder der nördlichen gemäßgten Klimazone mit typischen Klimadiagrammen (aus Strasburger, E.(Ersthrsg.): Lehrbuch der Botanik, 37.A. 2014, S. 868)

Wälder gibt es auf der Erde schon seit mehr als 350 Mill.J. Hier soll aber nur auf die jüngste Erdegschichte eingegangen werden, in der die mitteleuropäischen Wälder entstanden sind.

Sie liegen in dem Laubwaldgürtel der gemäßigten Zone, der sich von Nordamerika über Europa bis nach Ostasien erstreckt. Das Besondere der zentraleuropäischen Wälder ist, dass sie erdgeschichtlich sehr jung sind. In den Kälteperioden des Pleistozäns war Mitteleuropa eine waldfreie, von Tundra oder Gletschern bedeckte Landschaft. Erst nach dem Rückzug der Gletscher vor etwa 12.000 Jahren konnte sich Mitteleuropa langsam wieder bewalden. Der Vergleich mit den entsprechenden Waldgesellschaften Nordamerikas und Ostasiens zeigt, dass dort etwa zehnmal soviele Gehölzarten vorkommen wie in Mitteleuropa. Man kann also davon ausgehen, dass der Wiederbewaldungsprozess hier noch längst nicht abgeschlossen wäre. Allerdings wurde die natürliche Sukzession durch das Auftreten des Menschen zunächst stark beeinflusst und schließlich durch die Forstwirtschaft ganz beendet. Die heutige Zusammensetzung unserer Waldgesellschaften hat zwar durchaus etwas zu tun mit den natürlichen Gegebenheiten und den Umweltfaktoren, sie wird aber entscheidend bestimmt von forstlichen Maßnahmen wie Umtriebszeiten, Aufforstungsmaßnahmen usw.

Auch in der erdgeschichtlich gesehen jungen Epoche seit der letzten Kaltzeit hat sich allerdings das Klima in Mitteleuropa mehrfach verändert und dies hat sich auch auf die Zusammensetzung der Vegetation ausgewirkt. Über diese Vegetationsgeschichte seit der letzten Kaltzeit ist man durch Pollen-Untersuchungen (Pollendiagramme) sehr gut unterrichtet.

Pollendiagramm vom Ende der letzten Kaltzeit bis zur Gegenwart (nach Frey/Lösch, Geobotanik,3.A. 2010, S.159)
Pollendiagramm vom Ende der letzten Kaltzeit bis zur Gegenwart (nach Frey/Lösch, Geobotanik,3.A. 2010, S.159)

Während zuerst (bis ca. -9000 J) Birken und Kiefern dominierten, gab es zwischen -9000 und -8000 J einen starken Anstieg der Hasel, Gleichzeitig begannen sich Eichen und Ulmen, an speziellen Standorten auch Linden und Eschen immer mehr auszubreiten und die Haselbestände gingen etwas zurück. Buchen haben sich vermutlich erst durch den Einfluss des Menschen aber auch aufgrund eines feuchteren und kühleren Klimas im Subatlantikum seit 3000 J immer mehr ausgebreitet. In den schattigen Buchenwäldern hatten Haselsträucher nur noch an Waldrändern eine Chance. Die heutige weite Verbreitung der Fichte ist auf Aufforstungsmaßnahmen ab Ende des 18. JH zurückzuführen.

Verschiedene Waldgesellschaften

Auf Grund von Jahrzehnte langen empirischen Erhebungen zu den Standortansprüchen von Pflanzenarten wurden  von Heinz Ellenberg in den 1970 er Jahren für nahezu alle in Mitteleuropa heimischen Pflanzenarten Zeigerwerte für verschiedene Umweltfaktoren zusammengestellt und seither immer wieder neuen Erkenntnissen angepasst. Das ökologische Verhalten gegenüber einem bestimmten Standortfaktor wird in der Regel durch eine Ziffer von 1 bis 9 ausgedrückt. Diese Zeigerwerte spiegeln das Vorkommen einer Art unter Freilandbedingungen wider, d. h. bei ausgeprägter zwischenartlicher Konkurrenz. Die Zeigerwerte machen also keine Aussage über das Verhalten in Reinkultur.http://www.utb-shop.de/downloads/dl/file/id/27/zusatzkapitel_zeigerwerte_der_pflanzen_mitteleuropas.pdf

Die Zeigerwerte der Baumarten bestimmen die Zusammensetzung der Bäume in den verschiedenen Waldgesellschaften. Aufgrund ihres Wasserbedarfes und der bevorzugten Bodenreaktion kann man für mitteleuropäische Waldtypen ein sogenanntes Ökogramm aufstellen (vgl. Exkursionsangebot 2016). Auch die krautigen Pflanzen des Waldbodens lassen sich basierend auf den Zeigerwerten  „Bodenfeuchte“ und „Bodenreaktion“ zu ökologischen Gruppen zusammenfassen. Pflanzen einer solchen Gruppe sind häufig nebeneinander anzutreffen. Sie können zur Charakterisierung von Standorten verwendet werden, insbesondere für Bodenfeuchte, pH-Wert und Nährmineralverfügbarkeit. Die Busch-Windröschen-Gruppe z. B. ist typisch für wenig saure mäßig trockene bis mäßig feuchte Böden.

Ökologische Gruppen von mitteleuropäischen Waldbodenpflanzen

Ökologische Gruppen krautiger Pflanzen aus mitteleuropäischen Wäldern (nach H. Ellenberg)

Die „ökologischen Gruppen“ basieren auf den von Ellenberg in den 1970 er Jahren zum ersten Mal zusammengestellten Zeigerwerten, die in der letzten Auflage der „Vegetation Mitteleuropas“ nach neuestem Stand zusammengestellt sind. Sie sind im Internet frei zugänglich: http://www.utb-shop.de/downloads/dl/file/id/27/zusatzkapitel_zeigerwerte_der_pflanzen_mitteleuropas.pdf

Die römischen Ziffern von I-VI stehen für zunehmende Feuchtigkeit, die Buchstaben von a – e für einen zunehmenden pH-Wert („Bodenreaktion“) .

Eine etwas andere Zusammenstellung für die forstliche Standortkartierung findet sich unter folgenden URLs

http://www.forst-rast.de/Artengruppen.html

http://www.forst-rast.de/Zeigerpflanzen.html#_

I a-b Becherflechten-Gruppe

Becherflechten – Cladonia-Arten, Moos Dicranum scoparium, Moos Polytrichum juniperinum, Sand-Segge – Carex arenaria, Doldiges Habichtskraut – Hieracium umbellatum

I c Berg-Seggen-Gruppe

Bärenschote – Astragalus glyciphyllos, Pfirsichblättrige Glockenblume – Campanula persicifolia, Finger-Segge – Carex digitata, Berg-Segge – Carex montana, Maiglöckchen – Convallaria majalis, Nickendes Perlgras – Melica nutans, Salomonsiegel – Polygonatum odoratum, Nickendes Leimkraut – Silene nutans

I d-e Erd-Seggen-Gruppe

Moos Homalothecium lutescens, Graslilien-Arten – Anthericum spp., Erd-Segge – Carex humilis, Blut-Storchschnabel – Geranium sanguineum, Hirsch-Haarstrang – Peucedanum cervaria, Schwalbenwurz – Vicetoxicum hirundinaria, Diptam – Dictamus albus, Blauroter Steinsame – Aegonychon purpurocaeruleum

II a Heidelbeer-Gruppe

Moos Dicranum scoparium, Moos Leucobryum glaucum, Moos Hypnum cupressiforme, Besenheide – Calluna vulgaris, Heidelbeere – Vaccinium myrtillus, Preiselbeere – Vaccinium vitis-idaea, Wiesen-Wachtelweizen – Melampyrum pratense, Borstgras – Nardus stricta

 II b Schlängel-Schmielen-Gruppe

Moos Dicranella heteromalla, Moos Polytrichum formosum, Schlängel-Schmiele – Deschampsia flexuosa, Ruchgras – Anthoxanthum odoratum, Pillen-segge – Carex pilulifera, Besenginster – Cytisus scoparius, Harzer Labkraut – Galium harcynicum, Siebenstern – Trientalis europaea, Gebräuchlicher Ehrenpreis – Veronica officinalis, Weiches Honiggras – Holcus mollis, Schaf-Schwingel – Festuca ovina agg., Gewöhnliche Haimbinse – Luzula luzuloides, Gewöhnliche Goldrute – Solidago virgaurea

II c Busch-Windröschen-Gruppe

Moos Atrichum undulatum. Moos Eurhynchium striatum, Moos Isothecium viviparum, Busch-Windröschen – Anemone nemorosa, Wald-Knaulgras – Dactylis polygramma, Berg-Weidenröschen – Epilobium montanum, Mandelblättrige Wolfsmilch – Euphorbia amygdaloides, Wald-Schwingel – Festuca altissima, Waldmeister – Galium odoratum, Behaarte Hainbinse – Luzula pilosa, Wald-Flattergras –Milium effusum, Dreiadrige Nabelmiere – Moehringia trinervia, Efeu – Hedera helix, Hain-Rispengras – Poa nemoralis, Große Sternmiere – Stellaria holostea, Hasenlattich- Prenanthes purpurea, Zaun-Wicke – Vicia sepium, Wald-Veilchen – Viola reichenbachiana

II d Goldnessel-Gruppe

Moos Eurhynchium swartzii, Goldnessel – Lamiastrum galeobdolon, Haselwurz – Asarum, europaeum, Wald-Zwenke – Brachypodium sylvaticum, Wald-Trespe – Bromus ramosus, Wald-Segge – Carex sylvatica, Grünliche Stendelwurz – Epipactis helleborine, Gewöhnliche Nelkenwurz – Geum urbanum, Leberblümchen – Hepatica nobilis, Frühlings-Platterbse – Lathyrus vernus, Wald-Bingelkraut – Mercurialis perennis, Einbeere – Paris quadrifolia, Vielblütige Weißwurz – Polygonatum multiflorum, Lungenkraut – Pulmonaria officinalis, Sanikel – Sanicula europaea, Hohe Schlüsselblume – Primula elatior

II e Waldvögelein-Gruppe

Moos Ctenidium molluscum, Moos Encalypta streptocarpa, Rotes Waldvögelein – Cephalanthera rubra, Weißes Waldvögelein – Cephalanthera damasonium, Frauenschuh – Cypripedium calceolus, Nieswurz – Helleborus foetidus, Echte Schlüsselblume – Primula veris

III a Rippenfarn-Gruppe

Moos Bazzania trilobata, Rippenfarn – Blechnum spicant, Tannenbärlapp – Huperzia selago, Schlangen-Bärlapp – Lycopodium annotinum

III b Adlerfarn-Gruppe

Moos Hylocomium splendens, Moos Plagiothecium undulatum, Adlerfarn – Pteridium aquilinum, Dorniger Wurmfarn – Dryopteris carthusiana, Stechender Hohlzhn – Galeopsis tetrahit, Wald-Hainbinse  – Luzula sylvatica, Mauerlattich – Mycelis muralis

III c Kriechender Günsel-Gruppe

Moos Brachythecium rutabulum, Moos Cirriphyllum piliferum, Kriechender Günsel – Ajuga reptans, Frauenfarn – Athyrium filix-femina, Hunds-Quecke – Elymus caninus, Rasen-Schmiele – Deschampsia cespitosa, Riesen-Schwingel – Festuca gigantea, Stinkender Storchschnabel – Geranium robertianum, Gundermann – Glechoma hederacea, Wald-Sauerklee – Oxalis acetosella, Knotige Braunwurz – Scrophularia nodosa, Hain-Gilbweiderich – Lysimachia nemorum

III d Scharbockskraut-Gruppe

Moos Mnium undulatum, Scharbockskraut – Ficaria verna, Moschuskraut – Adoxa moschatellina, Gefleckter Aronstab – Arum maculatum, Gewöhnliches Hexenkraut – Circaea lutetiana, Wald-Ziest – Stachys sylvatica, Goldschopf-Hahnenfuß – Ranunculus auricomus, Zweiblatt – Listera ovata

 III e Lerchensporn-Gruppe

Giersch, Geißfuß – Aegopodium podagraria, Bär-Lauch – Allium ursinum, Gelbes Windröschen – Anemone ranunculoides, Hohler Lerchensporn – Corydalis cava, Gold-Gelbstern – Gagea lutea, Kratzbeere – Rubus caesius

IV a-b Pfeifengras-Gruppe

Pfeifengras – Molinia caerulea, Aufrechtes Fingerkraut – Potentilla erecta, Glockenheide – Erica tetralix

IV c Winkel-Seggen-Gruppe

Winkel-Segge – Carex remota, Wald-Schachtelhalm – Equisetum sylvaticum, Berg-Ehrenpreis – Veronica montana, Hain-Sternmiere – Stellaria nemorum, Großes Springkraut, „Rühr-mich-nicht-an“- Impatiens noli-tangere

IV d Hänge-Seggen-Gruppe

Hänge-Segge, Nickende S. – Carex pendula, Behaarter Kälberkropf – Chaerophyllum hirsutum, Wechselblättriges Milzkraut – Chrysosplenium alternifolium, Riesen-Schachtelhalm – Equisetum telmateia, Alpen-Hexenkraut – Circaea alpina, Weiße Pestwurz – Petasites albus

V a-b Rauschbeeren-Gruppe

Moos Polytrichum commune. Moos Sphagnum acutifolium, Moos Sphagnum palustre, Rauschbeere – Vaccinium uliginosum, Sumpfporst – Rhododendron tomentosum

V c Mädesüß-Gruppe

Moos Climacium dendroides, Gewöhniches Mädesüß – Filipendula ulmaria, Wald-Engelwurz – Angelica sylvestris, Wiesen-Schaumkraut – Cardamine pratensis, Pfennigkraut – Lysimachia nummularia, Blutweiderich – Lythrum salicaria, Flatter-Binse – Juncus effusus, Gewöhnlich es Rispengras – Poa trivialis

V d-e Sumpf-Seggen-Gruppe

Sumpf-Segge – Carex acutiformis, Kohl-Kratzdistel – Cirsium oleraceum, Sumpf-Pippau – Crepis paludosa, Bach-Nelkenwurz – Geum rivale, Rohr-Glanzgras – Phalaris arundinacea, Wald-Simse – Scirpus sylvaticus, Echter Baldrian – Valeriana officinalis, Gewöhnlicher Beinwell – Symphytum officinale

VI a Scheidiges Wollgras-Gruppe

versch. Torfmoose, z. B. Sphagnum magellanicum, Scheidiges Wollgras – Eriophorum vaginatum, Rosmarinheide – Andromeda polyfolia, Moosbeere – Vaccinium oxycoccus, Rasen-Haarsimse – Trichophorum cespitosum

VI b Sumpf-Blutaugen-Gruppe

Sumpf-Blutauge – Potentilla palustre, Wiesen-Segge, Braun-Segge – Carex nigra, Schnabel-Segge – Carex rostrata, Schmalblättriges Wollgras – Eriophorum angustifolium, Wassernabel – Hydrocotyle vulgaris

VI c Sumpf-Lappenfarn-Gruppe

Sumpf-Lappenfarn – Thelypteris palusris, Sumpf-Reitgras – Clamagrostis canescens, Verlängerte Segge – Carex elongate, Glatte Segge – Carex laevigata, Königsfarn- Osmunda regalis

VI d-e Sumpf-Dotterblumen-Gruppe

Moos Calliergonella cuspidata, Sumpf-Dotterblume – Caltha palustris, Teich-Schachtelhalm – Equisetum fluviatile, Sumpf-Schwertlilie – Iris pseudacorus, Sumpf-Labkraut – Galium palustre, Wolfstrapp – Lycopus europaeus, Sumpf-Haarstrang – Peucedanum palustre, Helmkraut – Scutellaria galericulata, Bittersüßer Nachtschatten – Solanum dulcamara

Sonderstandorte:

luftfeucht und sauer: Eichenfarn-Gruppe

Eichenfarn – Gymnocarpium dryopteris, Wald-Geißbart – Aruncus sylvestris, Breitblättriger Dornfarn – Dryopteris dilatata, Buchenfarn – Thelypteris phegopteris, Bergfarn – Oreopteris limbosperma

luftfeucht und basenreich: Mondviolen-Gruppe

Mondviole, Ausdauerndes Silberblatt – Lunaria rediviva, Christophskraut – Actaea spicata, Ruprechtsfarn – Gymnocarpium robertianum, Hirschzungenfarn – Asplenium scolopendrium

 Wechseltrocken, tonig: Blaugrüne Seggen-Gruppe

Blaugrüne Segge – Carex flacca, Rohr-Pfeifengras – Molinia arundinacea, Berg-Reitgras – Calamagrostis varia

wechselfeucht: Zittergras-Seggen-Gruppe

Zittergras-Segge – Carex brizoides, Hasen-Segge – Carex leporina

nitratreich: Knoblauchrauken-Gruppe

Knoblauchsrauke – Alliaria officinalis, Wiesen-Kerbel – Anthriscus sylvestris, Taumel-Kälberkropf – Chaerophyllum temulum, Schöllkraut – Chelidonium majus, Efeublättriger Ehrenpreis –Veronica hederifolia

kalkreich: Blaugras-Gruppe

Kalk-Blaugras – Sesleria caerulea, Vogelfuß-Segge – Carex ornithopoda, Alpen-Distel – Carduus defloratus, Alpen-Leinblatt –Thesium alpinum

Gute Infos zum Thema finden sich unter http://www.ecology.uni-jena.de/ecologymedia/ag_pflanzenoekologie/VegOeko/Kap_1.pdf

Aufgaben

1. Bäume und Sträucher (Luftpflanzen) im Adelsreuter Wald

Listen Sie die von uns auf der Exkursion beobachteten Bäume und Sträucher auf und ermitteln Sie für jede Art die Zeigerwerte für Lichtgenuss, Feuchtigkeit, Nitratgehalt und Bodenreaktion. Nutzen Sie diese Zusammenstellung für eine ökologische Bewertung des Waldgebietes und stellen Sie eine Beziehung zu den bodenkundlichen bzw. geologischen Gegebenheiten her.

2. CO2-Speicher Wald

Sie haben den Gehalt des gespeicherten Kohlenstoffs bzw. Kohlenstoffdioxids im Holzkörper eines Baumes abgeschätzt. Stellen Sie Vorgehensweise und ihr Ergebnis dar. Setzen Sie den erhaltenen Wert in Beziehung zu dem CO2-Ausstoß der Exkursions-Autos (vereinfachte Annahme: 8 PKWs PH-Weingarten – Appenweiler und zurück, Verbrauch 7 L/100 km). http://de.myclimate.org/de/?gclid=CKCtopHly9MCFUJAGwodw1QL5Q

3. Essbare Bäume

Wir haben die jungen Triebe von Fichten und Tannen verkostet. Recherchieren Sie zur möglichen kulinarischen Verwertung dieser jungen Nadelholztriebe, erproben Sie ein Rezept und berichten Sie von ihren Erfahrungen.

4. Bodenpflanzen (Geophyten) sind eine relativ häufige Lebensform in mitteleuropäischen Laubwäldern.

a) Geben Sie einige Beispiele und erklären Sie die Angepasstheit dieser Pflanzen an ihren Standort.

b) Beschreiben Sie den Lebenszyklus der Herbstzeitlose und erklären Sie, warum diese Pflanze deshalb besonders gut an den Standort Wiese angepasst ist.

5. Atmung von Wassertieren.

Die Wege im Adelsreuter Wald-Weißenauer Wald sind oft von Gräben gesäumt, die zum Teil permanent Wasser führen. Dort entdeckten wir kleine Grasfrösche (vermutlich Jungtiere vom vergangenen Jahr), Köcherfliegenlarven und Larven von Großlibellen.

Vergleichen Sie die Atmung (Sauerstoffaufnahme) dieser drei Tiere.

Literatur zum Thema Baum und Wald

Bartsch, Norbert/ Röhrig, Ernst (2016): Waldökologie – Einführung für Mitteleuropa. Berlin/Heidelberg: Springer-Spektrum

Braune, W./Leman, A./Taubert, H. (9.A, 2007): Pflanzenanatomisches Praktikum I: Zur Einführung in die Anatomie der Vegetationsorgane der Samenpflanzen. Berlin/Heidelberg: Springer-Spektrum

Bundesamt für Naturschutz (BfN): www.bfn.de

Dylla, Klaus/Krätzner, Günter (1977): Das biologische Gleichgewicht in der Lebensgemeinschaft Wald. Biologische Arbeitsbücher 9, Quelle und Meyer, Heidelberg/Wiesbaden. Folgeauflagen: Das ökologische Gleichgewicht in der Lebensgemeinschaft Wald (4.A.1986): Lebensgemeinschaft Wald (1998)

Ellenberg, H./Leuschner, C. (6. erweiterte A, 2010): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Ulmer

Hofmeister, H. (1990): Lebensraum Wald. Hamburg: Parey

Küster, Hansjörg (3. A. 2013): Geschichte des Waldes – Von der Urzeit bis zur Gegenwart. München: C.H. Beck

Lude, Arnim (Hrsg.) (2014): Wald im Wandel. Unterricht Biologie 395 (Jg.38)

Lude, Arnim (Hrsg.) (2014): Survival im Wald. Unterricht Biologie Kompakt 396 (Jg.38)

Mattheck, C. (1999): Stupsi erklärt den Baum. Forschungszentrum Karlsruhe

Oehmig, B. (Hrsg.) (2008): Wald. Unterricht Biologie 334 (Jg.32)

Schulbiologiezentrum Hannover-Arbeitshilfen http://www.schulbiologiezentrum.info/arbeitshilfen.htm

Wildmann, Steffen et al. (2014): Wälder mit natürlicher Entwicklung in Deutschland

Wohlleben, Peter (2013): Der Wald – ein Nachruf. Wie der Wald funktioniert, warum wir ihn brauchen und wie wir ihn retten können – ein Förster erklärt. München: Ludwig  (vom Autor gibt es zahlreiche weitere Bücher zum Thema Wald und Baum)

Rotach bei Oberteuringen (12.05.2017)

Oberteuringen1

Treffpunkt: Oberteuringen, Franz-Roth-Platz

Fahrt von Ravensburg über die B33 bis Oberteuringen-Neuhaus, dort links abzweigen in die Teuringer Straße, die in die Augustin Bea Straße übergeht, dann bis zum Franz Roth Platz rechts.

Thematische Schwerpunkte: Die Rotach als drittgrößter Zufluss des östlichen Bodensees, Ökologie von Fließgewässern, Messung einiger abiotische Faktoren, biotische Faktoren: Wassertiere und Uferpflanzen,  Gefährdung und Schutz von Bächen, Renaturierungsmaßnahmen

Oberteuringen2

Die Rotach

Die Rotach  entwässert das Pfrunger Ried nach Süden. Sie entsteht bei Wilhelmsdorf , durchfließt  den Harttobel bei Horgenzell und erreicht durch den Benistobel vor Urnau das Deggenhauser Tal. Sie durchfließt die Gemeinde Oberteuringen, bis sie schließlich nach Friedrichshafen kommt, wo sie einen Kilometer östlich des Stadtkerns als westliche Grenze des Eriskircher Rieds in den Bodensee mündet. Ihr Einzugsgebiet beträgt rund 130 km².

Quellhöhe  620 m, Mündungshöhe  395 m, Höhenunterschied 225 m, Länge 38,8 km, Mittlerer Abfluss bei der Mündung 1,83 m3/s

Lage der Jungmoräne und oberschwäbische Zuflüsse zum Bodensee
Lage der Jungmoräne und oberschwäbische Zuflüsse zum Bodensee (verändert nach Sorg, J.: Typische Vegetationsbilder der Oberschwäbischen Landschaft, In Ott., S.; Oberschwaben, Otto Maier, 1972)

An dem Lauf der knapp 40 km langen Rotach lagen einst 22 Mahl- und Sägemühlen. Für diese Mühlen wurde der Bach jeweils mit Wehren aufgestaut – für wandernde Fische, aber auch für andere Organismen ein Problem. Das Wehr bei Oberteuringen wurde im Juli 2002 durch eine schräge Rampe mit Steinblöcken  aufgefüllt. Der Baggerfahrer berichtete, dass die ersten Fische schon versuchten, hochzukommen, als er noch bei der Arbeit war. Ein weiteres Wehr in Unterteuringen wurde im August 2005 gesprengt. Das Wehr bei der Reinachmühle wurde erst 2014 renaturiert.

Rotach bei Oberteuringen
Rotach bei Oberteuringen

Gewässergütebestimmung

Die Wasserqualität eines Fließgewässers, die Gewässergüte, hängt vor allem von seinem Gehalt an abbaubaren organischen Substanzen und anorganischen Substanzen (Nährmineralien) ab. Beide Faktoren stehen in Beziehung miteinander: Eine hohe Nährsalzkonzentration fördert die Produktion und Anreicherung von organischen Stoffen im Wasser, dagegen setzt der Abbau organischer Substanzen Nährsalze, vor allem Nitrate und Phosphate, frei.

Stoffkreislauf im Fließgewässer
Stoffkreislauf im Fließgewässer

In diesem Schema nicht berücksichtigt ist, dass es sich bei einem Fließgewässer um ein Durchflusssystem handelt. Organismen, Abfallstoffe und Nährsalze werden mit dem Wasserstrom transportiert. Dies wird in der folgenden Darstellung berücksichtigt. Daraus ergibt sich für das Stoff- und Nahrungsangebot in einem Fließgewässer aber auch, dass es von derr Quelle zur Mündung hin zunimmt. Außerdem bedeutet stäkeres Gefälle auch überwiegende Erosion, geringres Gewfälle überwiegende Sedimentation.

Stoff- und Nahrungsangebot in einem Fließgewässer (aus Dick, G.(1990): Fließgewässer Ökologie und Güte - verstehen und bestimmen. Hrsg.: Verein für Ökologie und Umweltforschung, Wien)
Stoff- und Nahrungsangebot in einem Fließgewässer (aus Dick, G.(1990): Fließgewässer Ökologie und Güte – verstehen und bestimmen. Hrsg.: Verein für Ökologie und Umweltforschung, Wien)

Abiotische Faktoren

Allgemeine Kenngrößen: Färbung, Trübung, Geruch, Fließgeschwindigkeit, pH, Sauerstoffgehalt, Leitfähigkeit

Nährsalze : Phosphat, Nitrat, Nitrit, Ammonium

weitere Salze: Chlorid, Sulfat

Schwermetalle: Blei, Cadmium, Chrom, Kupfer, Nickel, Quecksilber, Zink

Summenkenngrößen: BSB (Biochemischer Sauerstoffbedarf), CSB (Chemischer Sauerstoffbedarf) TOC (Gesamtkohlenstoff)

Industriechemikalien (z.B. halogenierte Kohlenwasserstoffe)

Nanoplastikteile

Biotische Faktoren

Die abiotischen Faktoren in einem Fließgewässer variieren meistens sehr stark, deshalb liefert ihre Messung immer nur eine Momentaufnahme. Demgegenüber reagieren Organismen und Lebensgemeinschaften auf die Wasserqualität über einen längeren Zeitraum.

Ein seit langem standardisiertes Verfahren zur biologischen Gewässergüte Bewertung liefert das Saprobiensystem. Über ausgewählte Tierarten (und Mikroorganismen) und deren Häufigkeit wird auf die Belastung eines Gewässers mit organischen, biologisch leicht abbaubaren Stoffen geschlossen (Saprobie = Intensität der heterotrophen, Sauerstoff zehrenden Stoffumsetzungen). Für das Verfahren gibt es eine DIN Norm, in die  160 wirbellose Tiere (vor allem Insektenlarven, Kleinkrebse, Schnecken, Muscheln, Egel), einige Fischarten, sowie 90 Mikroorganismen (Bakterien, Pilze, Ciliaten) aufgenommen sind. In der Praxis werden die Mikroorganismen vor allem dann herangezogen wenn nicht genügend Makroorganismen zu finden sind. Geeignet für diese Bewertung snd nur relativ stenöke Arten, die an einen engen Bereich von Umweltfaktoren gebunden sind (Zeigerarten). Arten, die in Gewässern fast aller Güteklassen vorkommen – wie z.B. Stechmückenlarven – sind als Indikatoren ungeeignet.

Die Zuordnung der Wassertiere zum Saprobiensystem geht auf Kolkwitz und Marson 1902 zurück, wurde aber immer wieder erweitert und bearbeitet. Bestimmte Belastungen – insbesondere mit nicht  biologisch abbaubaren Schwermetallen und synthetiscvhen Schadstoffen – werden schlecht oder garnicht erfasst. Auch die großen regionalen Unterschiede der Fließgewässer sind ein Problem. Langsm fließende Bäche des Flachlandes enthalten natürlicher Weise mehr organische Abfallstoffe und haben einen geringeren Sauerstoffgehlat als Bergbäche. Deshalb können Flachlandbäche nach dem Saprobiensystem die Güteklasse I garnicht erreichen. Die EU-Wasserrahmenrichtlinie (EU-WRR) berücksichtigt dies durch Einbeziehung des Gewässertyps in die Bewertung.

Gewässergüteklassen (aus Graw, M. (2001): Ökologische Bewertung von Fließgewässern. VDG Bd.64
Gewässergüteklassen (aus Graw, M. (2001): Ökologische Bewertung von Fließgewässern. VDG Bd.64)

http://www.vdg-online.de/band64.html

Gewässergütekarte von Baden-Württemberg

http://www.fv-heilbronn.de/karten/guete_2000.jpg

Stationen an der Rotach

Untersuchungsgebiet an der Rotach, Ausschnitt aus TK 1:25000, Blatt8222 Markdorf
Untersuchungsgebiet an der Rotach, Ausschnitt aus TK 1:25000, Blatt 8222 Markdorf

Diese Exkursion haben wir als Parcours durch 4 Stationen organisiert, die alle in der Nähe eines Grill- und Spielplatzes bei Oberteuringen eingerichtet wurden. Tische und Bänke konnten dafür als Abstell- und Arbeitsplätze genutzt werden.

Gewönliche Schuppenwurz - Lathraea squamaria
Gewönliche Schuppenwurz – Lathraea squamaria (Foto Probst)

Auf dem Weg vom Parkplatz zu den Stationen konnten wir neben Bärlauch und Einbeere  die blassen Fruchtstande der Schuppenwurz (Lathraea squamariea, Fam. Sommerwurzgewächse)  entdecken. Die fast völlig chlorophyllfreie Pflanze hat ein verzweigtes, unterirdisches Rhizom mit stärkereichen Schuppenblättern und Wurzeln mit Saugorganen, mit denen sie vor allem Baumwurzeln anzapft und Wasser und Assimilate ansaugt. Die langlebigen Samen können nur erfolgreich auskeimen, wenn sie dichter als 1 cm bei einer möglichen Wirtswurzel liegen.

Auf Holzresten fanden wir zahlreiche Fruchtkörper des Glimmer-Tintlings (Coprinellus micaceus), eine Pilzart, die man bei milder Witterung das ganze Jahr über finden kann.

Station 1: Abiotische Wassereigenschaften

Sinnlich wahrnehmbar: Farbton, Farbstärke, Geruch, Trübung, Schaumbildung

Gemessen: pH-Wert, Nitrat, Nitrit, Ammonium, Phosphat, Gesamthärte. Der Sauerst0offgehalt konnte nicht gemessen werden, da die Sauerstoffelektrode defekt war.

Station 2: Zeigerorganismen, Saprobienwert, Gewässergüte

Es wurden vor allem verschiedene Einagsfliegenlarven gefunden. Besonders ein Exemplar der Gemeinen Kahnschnecke (Theodoxus fliuviatilis) mit dem Saprobinewert 1,7 (nach Schwab,1995) deutet auf gute Gewässerqualität.

Station 3: Fließgewschwindigkeit

Strömungsmesser

Die Fließgeschwindigkeit und die Strömungseigenschaften wurden mit einem Papierbootrennen und mit einem einfachen Strömungsmesser untersucht.

Station 4: Bachbegleitende Pflanzen

Pflanzen an der Rotach
Pflanzen an der Rotach

Jede Gruppe bestimmte 6 bachbegleitende Pflanzenarten, sortierte sie nach ihrem Standort relativ zum Bach und ermittelte Zeigerwerte und Lebensform.

Auswertung der Stationsarbeit

Die Auswertung der Stationsarbeit wird jeweils von denen, die sich auf die Station vorbereitet haben bzw. bei unserer Abschlussbesprechung gemeldet haben, vorgenommen. Die Ergebnisse werden allen Teilnehmern zur Verfügung gestellt.

Literatur zum Thema Fließgewässer

Baur, Werner H. (1997): Gewässergüte bestimmen und beurteilen. Blackwell-Wissenschaftsverlag

Brehm, J./Meijering, M. P. D. (3. A.1996): Fließgewässerkunde – Einführung in die Ökologie der Quellen, Bäche und Flüsse. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Engelhardt, Wolfgang (17. A.; 2015): Was lebt in Tümpel, Bach und Weiher? Stuttgart: Kosmos-Franckh

Fey, Michael, J. (1996): Biologie am Bach – Praktische Limnologie für Schule und Naturschutz. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Graw, Martina (2001):Ökologische Bewertung von Fließgewässern. Schriftenreihe der Vereinigung Deutscher Gewässerschutz Bd.64.http://www.vdg-online.de/96.html

Klee, Otto (2. A. 1993): Wasseruntersuchungen – Einfache Analysenmethoden und Beurteilungskriterien. Biologische Arbeitsbücher. Wiesbaden: Quelle und Meyer

Mischke, Ute/Behrendt, Horst (2007): Handbuch zum Bewertungsverfahren von Fließgewässern mittels Phytoplankton zur Umsetzung der EU-WRRL in Deutschland. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung

Sandrock, F. (Hrsg.,1981): Fließgewässer. – Unterricht Biologie, H. 59

Schwab, H. (1995): Süßwassertiere – Ein ökologisches Bestimmungsbuch . Stuttgart: Klett Schulbuchverlag

Schulbiologiezentrum Hannover: Gewässergütebestimmung nach Tieren (Formblatt) http://www.schulbiologiezentrum.info/Gew%E4sseruntersuchung%20Tiere%20Formblatt%20EINFACH%20mit%20Arten.pdf

Wellinghorst, R. (2002): Wirbellose Tiere des Süßwassers. Seelze: Friedrich Verlag

http://www.biologie-schule.de/oekosystem-fliessgewaesser.php

http://www.fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/10119/s_28_boegew_arbeit.pdf?command=downloadContent&filename=s_28_boegew_arbeit.pdf&FIS=161

http://www.rolf-wellinghorst.de/fileadmin/rolf-wellinghorst.de/gewaesseroekologie/Gew%C3%A4sser%C3%B6kologie-BLK-Materialien1Teil.pdf

Dornacher Ried und Häckler Weiher (21.5.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016)

Treffpunkt: Kirche Blitzenreute (entspricht 2016)

TreffpunktBlitzenreute

Thematische Schwerpunkte: Hochmoor und Niedermoor, Moorregeneration, Wiesen und Ackerränder, Landschaftsgeschichte

Zum Exkursionsverlauf

Exkursionsweg am 21.5.2017
Exkursionsweg am 21.5.2017

Unter dem Klang der Kirchenglocken starteten wir pünktlich 10:00 Uhr in Blitzenreute. Nach den letzten Häusern hat man vom Weg einen weiten Blick über das Schussental bis zum Altdorfer Wald und weiter zu den Allgäuer Alpen. Dieses breite Schussenbecken markiert ein Rückzugsstadium des Rheingletschers. Letztes Jahr sahen wir hier verschiedene Getreidefelder, vor allem mit Sommergerste und Weizen, dieses Jahr war alles ein großes Maisfeld mit gerade gekeimten Maispflänzchen, dank Herbizid-Behandlung völlig unkrautfrei. Später ging es durch große Rapskulturen, also eine deutliche Zunahme der „Energiepflanzen“.

Der süße Duft der Rapsblüten konnte nicht nur von uns wahrgenommen werden, er lockte auch viele Bienen, auch Wildbienen, und einige Schwebfliegen, Schmetterlinge und Käfer. Bei genauem Hinsehen waren fast in jedem Blütenstand Rapsglanzkäfer (Brassicogethes aeneus) zu finden. Die Käfer fressen nicht nur Pollen, sondern sie können auch die Fruchtknoten annagen und dadurch erheblichen wirtschaftlichen Schaden verursachen.

Auf dem Weg bis zum Moorsteg sammelten wir blühende Pflanzen vom Weg- und Ackerrand, die wir dann sortierten und bestimmten. Besonders auffällig waren einige Schmetterlingsblütler , die vermutlich aus Zwischenfruchtmischungen stammen:

Persischer Klee - Trifolium resupinatum
Persischer Klee – Trifolium resupinatum
Ungarische Wicke - Vicia pannonica
Ungarische Wicke – Vicia pannonica

Inkarnat-Klee (Trifolium incarnatum), Persischer Klee (Trifolium resupinatum) und Ungarische Wicke (Vicia pannonica).

Schon von weitem waren die vielen weißen Haarbüschel des Scheidigen Wollgrases im Moor zu sehen. Unter Daniela Drehers Führung wurde auf dem Holzsteg ein Erkundungsgang in den Hochmoorbereich des Dornacher Rieds unternommen.

Anschließend nutzten wir eine blütenreiche und noch nicht gemähte Wiese zu einer Vegetationsaufnahme. Der Wiesen-Salbei fing gerade an zu blühen und wir beobachteten den speziellen Bestäubungsmechanismus („Schlagbaum“).

Auf mit Holzschnipseln bestreutem Weg ging es durch den im Rahmen eines LIFE-Projekts wieder vernässten Teil des früher durch Torfstiche und Entwässerungsgräben stark ausgetrockneten, teilweise bewaldeten Teil des Dornacher Rieds zum Mittagspausenplatz an einer Holzplattform über einer Torfstich-Wasserfläche (pH 5, Gesamthärte unter der Nachweisgrenze unseres Geräts) .Trotz den ziemlich extremen Bedingungen konnten wir in dem Gewässer zwei Wasserwanzenarten entdecken, eine Schwimmwanze und eine Wasserzikade, außerdem einige Stechmückenlarven. Wir stellten mit Plastiktüte und Federwaage fest, dass man aus einem  feuchten Torfmoospaket mit den Händen fast 70 Gewichtsprozent Wasser auspressen kann.

Anschließend zeigten uns Jennifer Griener und Katharina Frick, wie man mit Hilfe eines Spiegels gefühlt  durch die Baumwipfel spazieren kann.

Die Orchideenwiese, ein Niedermoorbereich Richtung Vorsee, erfreute uns mit vielen blühenden Knabenkräutern ( vor vallem Dactylorhiza majalis), außerdem Weißen Nazissen (Narcissus poeticus), einer Trollblume (Trollius europaeus) und Rostrotem Kopfried (Schoenus ferrugineus).

Unter Aufsicht eines Höckerschwans erprobten wir, wie gut man mit dem Gesicht bei geschlossenen Augen Pflanzen(teile) ertasten und erkennen kann.

Unsere Suche nach Holz bewohnenden Insekten in dem reichlich vorhandenen Totholz war nicht sehr ergiebig, aber das lag vielleicht auch daran, dass langsam unser Zeitbudget zu Ende ging, denn wir hatten ja noch einige Kilometer Rückweg vor uns. Als auffällige Holz bewohnende Pilzen beobachten wir zahlreiche Zunderschwämme (Fomes fomentarius) an einer alten Buche mit besetzter Spechthöhle und einen Stubben mit Fenchelporlingen (Gloeophyllum odoratum) sowie zwei kleine Fruchtkörper des giftigen Doppelgängers vom Stockschwämmchen, dem Gift-Häubling (Galerina marginata).

Aufgaben

  1. Pflanzen am Weg- und Ackerrand: Recherchieren und bewerten Sie die Zeigerwerte der von uns gefundenen Pflanzenarten.Ermitteln Sie die natürliche Verbreitung von Persischem Klee, Inkarnat-Klee, und Ungarischer Wicke. Erläutern Sie die besondere Bedeutung von Leguminosen als Zwischenfrucht.
  2. Beschreiben Sie die Rolle der Torfmoose bei der Bildung von Hochmooren und erklären Sie damit die extremen Bedingungen im Lebensraum Hochmoor.
  3. Zur Charakterisierung der Wiesenvegetation haben wir auf vier 1m2-Flächen die vorkommenden Pflanzenarten registriert. Stellen Sie die Ergebnisse in einer Tabelle zusammen und machen Sie mit Hilfe von Zeigerwerten eine Aussage zu Nährmineralgehalt, Feuchtigkeit und Bodenreaktion.
  4. Sauergräser können sehr unterschiedlich aussehen. Wir haben bisher die Gattungen Segge, Wollgras und Kopfried kennengelernt. Nennen Sie jeweils charakteristische Merkmale dieser drei Gattungen.
  5. Auf der „Orchideenwiese“ (am Weg Richtung Vorsee) haben wir drei ganz besondere Pflanzenarten gefunden:Breitblättriges Knabenkraut, Weiße Narzisse und Europäische Trollblume. Ermitteln Sie Schutzstatus, Verbreitung und Ökologie dieser drei Arten.
  6. Unter einer alten Rot-Buche hörten wir Vogelgepiepse. Dann entdeckten wir eine Spechthöhle. An dem Baumstamm waren mehrere Fruchtkörper des Zunderschwamms zu sehen. Beschreiben Sie die Lebensweise des Zunderschwamms und erklären Sie damit unsere Beobachtungen.

Eriskircher Ried (2.6.2017)

Geänderter Treffpunkt: Parkplatz beim Naturzentrum Eriskirch

Thematische Schwerpunkte: Bodenseeufer: Auwald, Riedwiesen; Uferschutz

URL des Naturschutzzentrums Eriskirch : http://www.naturschutz.landbw.de/servlet/is/67506/

Naturzentrum Eriskirch
Naturzentrum Eriskirch

Das Naturzentrumist im alten Bahnhofsgebäude untergebracht. Die Bahnstation existiert noch. Eine Anreise mit der Bahn ist deshalb möglich, aber von Weingarten nur mit zweimaligem Umsteigen.

TreffpunktEriskirchneu

 Zum Exkursionsverlauf

Im Naturschutzzentrum Eriskirch versammelten wir uns vor einem großen Reliefmodell des Bodensees. Herr Kersting, Diplombiologe und seit seiner Einrichtung vor 24 Jahren Leiter des Naturschutzzentrums, erklärte uns die ökologischen und biologischen Besonderheiten dieses  mit 536 km2 größten Voralpensees und seiner Uferregionen. Eine Besonderheit ist zum Beispiel, dass die jährlichen Wasserstandsschwankungen etwa 2 m betragen aber in extrem Jahren auch deutlich über diesem Wert liegen können. Weite Gebiete der flachen Uferregionen werden dann überschwemmt, zum Beispiel auch die Auwälder und Riedwiesen des Naturschutzgebietes Eriskircher Ried. Eine weitere Besonderheit ist die mit 250 m beachtliche Tiefe des Sees, die zum Beispiel dazu führt, dass in den tiefen Regionen eine konstante Temperatur von 4°C herrscht.

Das Naturschutzgebiet Eriskircher Ried wurde schon 1939 eingerichtet und diese frühe Unterschutzstellung hat dazu beigetragen, dass hier – zwischen dem sonst dicht besiedelten Bodenseeufer –  bis heute ein naturnaher Bereich mit ausgedehnten Ufer- und Flachwasserzonen, Auwäldern vor allem entlang der Schussen, Altwassern und Streuwiesen erhalten geblieben sind. Da die Streuwiesen nicht mehr genutzt werden, ist ihr Erhalt nur durch jährliche Mahd als Naturschutzmaßnahme möglich, sonst würden sie sich schnell in Auwald verwandeln. Herr Kersting berichtete mit eindrucksvollen Fotos von einigen besonderen Hochwasserereignissen, bei denen die Streuwiesen vollständig unter Wasser standen (und Bodenameisen, die zu ihrer Rettung ein Floß bildeten), von zahlreichen Vogelarten, die vor allem in den Zugzeiten hier zu beobachten sind, und dem erstaunlichen Lebenszyklus des Wiesenknopf-Ameisenbläulings, der seine Raupen nach dem Kuckucksprinzip von Ameisen aufziehen lässt. Nach einem Rundgang durch die Ausstellung sammelten wir uns wieder vor dem Naturschutzzentrum.

Unser Exkursionsweg führte zunächst durch Herbicid-behandelte Obstanlagen – über uns ein Schwarzer Milan – und dann direkt an die Schussen, die von großen Silber-Weiden gesäumt wird. Dann ging es durch eine feuchte Wiese, auf der man in der Ferne einige Sibirische Schwertlilien erkennen konnte, weitere blühende Arten waren Scharfer Hahnenfuß, Echter Baldrian, Kleiner Klappertopf und Kuckucks-Lichtnelken. Ein Versuch, die verschiedenen Schichten der Wiese durch unser Laken deutlicher zu machen, gelang nicht sehr überzeugend, da die Oberschicht an der ausgewählten Stelle nur von Gräsern gebildet wurde. Dieser Gruppe, der Familie der Süßgräser (Poaceae) widmeten wir im Schatten eines Walnuss-Baumes die nächste halbe Stunde.

DSCN0002

Rispengräser: Wolliges Honiggras, Wiesen-Schwingel, Glatthafer, Gewöhnliches Rispengras, Knäuelgras

Ährenrispengräser: Wiesen-Fuchsschwanz, Wiesen-Lieschgras

Ährengras: Weidelgras

DSCN0635

In Erinnerung an Herrn Kerstings Vortrag wurden an dem angelegten Demonstrationsteichs „Laubfrösche“ entdeckt. Auf den Fotos zeigte sich allerdings, dass sie alle zu den Wasserfröschen gehören (Teichfrosch bzw. Kleiner Wasserfrosch).

Z-S-Winder_bearbeitet-1
Z-Winder (z. B. Zaunwinde) und S-Winder (z.B. Hopfen)

Über eine Brücke querten wir einen Schussen-Altarm mit vielen Teichrosen und Schilfufer (aus Schilf und Rohrglanzgras) und gelangten dann in einen Wald mit großen Stiel-Eichen, Eschen, Hainbuchen und Sträuchern wie Gewöhnlichem Schneeball, Blutrotem Hartriegel und Hasel (Hartholzaue). Oft werden die Eichen von alten Efeupflanzen mit armdicken Sprossachsen umrankt. Eine krautige Kletterpflanze ist der Hopfen, dessen oft viele Meter langen Triebe jeden Herbst absterben. Er windet – wie die meisten Kletterpflanzen – immer in eine Richtung um die Unterlagen (Der Hopfen ist Rechtswinder oder S-Winder, die Zaunwinde dagegen Linkswinder oder Z-Winder).

Der Weg führte dann in einen 1-2 m tieferen Bereich. Nun sind die vorherrschenden Bäume Silber-Weiden und Schwarz-Pappeln, auch einige Birken und Zitter-Pappeln (Espen) wurden registriert (Weichholzaue). An einem Silber-Weiden-Stamm entdeckten wir die großen Fruchtkörper des Schwefel-Porlings (Laetiporus sulphureus). Der Pilz ist für eine rasch voranschreiende Baunfäule – das Holz wird brökelig und rotbraun – verantwortlich.

Abgeflachter Blattstiel der Espe oder Zitter-Pappel (Populus tremula) lässt das Blatt zittern
Abgeflachter Blattstiel der Espe oder Zitter-Pappel (Populus tremula) lässt das Blatt zittern

Über einen steilen Absatz gelangten wir auf den Hauptweg durchs Ried. Von der Brücke, welche die Schussen kurz vor ihrer Mündung quert, sahen wir zwei Haubentaucher. Dann ging der Weg zurück, zuerst durch Auwald, dann durch Streuwiesen,auf denen noch zahlreiche Sibirische Schwertlilien blühten. Kurz vor der Schranke am Zufahrtsweg zum Strandbad erfreute uns eine Nachtigall mit lautem Gesang.

An dieser Stelle beendeten wir den offiziellen Teil der Exkursion. Mit einigen Teilnehmerinnen fuhr ich noch zu dem neu gestalteten Strandabschnitt mit Grillplatz und Beobachtungsplattform neben dem Strandbad. Der hoch mit Kies aufgeschüttete Zugangsweg ist für Rollstuhlfahrer  allerdings nur mit kräftiger Anschubhilfe passierbar.

Aufgaben

  1. Die grünen Frösche, die wir in dem angelegten Teich gesehen haben, waren Wasserfrösche (oder Grünfrösche) aus der Familie der Echten Frösche (Ranidae). Der Europäische Laubfrosch ist der einzige mitteleuropäische Vertreter der vor allem in den Tropen verbreiteten, sehr artenreichen Familie der Laubfrösche (Hylidae), die wegen ihres guten Klettervermögens auch „Baumfrösche“ genannt werden. Vergleichen Sie Merkmale und Lebensweise von Europäischem Laubfrosch und Wasserfröschen (tabellarische Gegenüberstellung).
  2. Wiesen zeigen eine mehr oder weniger deutliche Schichtung: Oberschicht (Blütenschicht), Mittelschicht (Blattschicht), Unterschicht. Zählen Sie einige Pflanzenarten (einschließlich Gräsern) auf, die für die verschiedenen Schichten typisch sind. Ordnen Sie folgende Tiergruppen verschiedenen Wiesenschichten zu: Schwebfliegen, Feldheuschrecken, Schmetterlinge, Schmetterlingsraupen, Blattwanzen, Laufkäfer, Bienen, Hummeln, Blütenböcke, Zikaden, Blattläuse, Asseln, Tausendfüßler, Krabbenspinnen, Trichterspinnen.
  3. Erläutern Sie die besonderen Eigenschaften des Lebensraumtyps „Auwald“ und erklären Sie die Unterschiede zwischen Hartholzauen und Weichholzauen.
  4. Obwohl das Eriskircher Ried ein Naturschutzgebiet ist, werden die Riedwiesen im Winterhalbjahr regelmäßig gemäht. Erklären Sie die Bedeutung dieser Pflegemaßnahme und erläutern Sie, welche Folgen es hätte, wenn die Wiesen nicht mehr gemäht würden.

Hepbach-Leimbacher Ried (18.6.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016 )

Treffpunkt: Wanderparkplatz bei Unterteuringen (Richtung Modellflieger-Platz, wie 2016)

von der B 33 bis nach Unterteuringen
TreffpunktUnterteuringen

Thematische Schwerpunkte: Landschaftsgeschichte, Landschaftpflege und Naturschutz mit Heckrindern, Bedeutung von Saumbiotopen in der Agrarlandschaft

Zum Exkursionsverlauf

18.6.17-Exkursionsweg

Der Treffpunkt beim Hof Reinöhl nahe Unterteuringen liegt in einer weiten Talebene zwischen Gehrenberg im Norden und mehreren kleineren Hügeln – Drumlins – im Süden. Morphogenetisch handelt es sich um ein ehemaliges Eisrandtal am Nodrand des zurückweichenden Rheingletschers, durch das Wasser vom Eisrandsee im Schussenbecken bei Ravensburg bis zum Eisrandsee im heutigen Bereich des Überlinger Sees abfloss. Das Eisrandtal wurde durch mehrere Schuttkegel in verschiedene Abschnitte aufgeteilt, die in der Nacheiszeit teilweise vermoorten. Die Torfmächtigkeit beträgt im sog. Unterried bis 9,9 m, in anderen Teilen über 7 bzw. über 4 m (Würdigung  des Natur- und Landschaftsschutzgebietes “Hepbach-Leimbacher Ried“, Dr. Rixen 1982).

Vom Treffpunkt am Wanderparkplatz gingen wir zunächst ein paar Schritte bis zum Beginn einer Benjeshecke, die 1991 auf der ehemaligen Trasse der Teuringertal-Bahn (https://de.wikipedia.org/wiki/Teuringertal-Bahn). Als Benjeshecken werden – nach ihrem sehr wirkungsvollen Förderer und Propagandisten Hermann Benjes – Feldhecken bezeichnet,  für deren Anlage zunächst Baum- und Heckenschnitt aufgeschichtet wird.

Da die Weg- und Feldränder teilweise noch nicht gemäht waren, nutzten wir die vielen blühenden bzw. fruchtenden Gräser zu einer Wiederholung unserer Gräserkennübungen von der vorigen Exkursion.

Merkhilfe für häufige Grasarten

In der Talsenke vor Hepbach wurde in den 1970iger Jahren nach Erdöl gebohrt und eine kurze Zeit auch etwas Öl gefördert (mündl. Mitteilung von Franz Beer). Oberschwäbische Ölvorkommen entstanden zu Zeiten der Molasse Ablagerung in sumpfigen Bereichen am Rand von Süßwasserseen bzw. in sehr flachen Meeresbecken.

Hier trafen wir mit Herrn Jörg Münch vom Vorstand des BUND Markdorf zusammen..

Der Weg führte uns über einen kurzen steilen Anstieg auf einen Höhenrücken, von dem man einen guten Blick über das Hepbach-Leimbacher Ried hat. Herr Münch gab uns eine Einführung in das Naturschutzmanagement mit Heckrindern. Das Beweidungsprojekt mit dieser Robustrinderrasse wurde hier  – betreut von der BUND-Gruppe Markdorf – 2001 begonnen. Zur Zeit werden 20 Rinder auf 17 ha Weidefläche gehalten.

Wir führten nun zwei Vegetationsaufnahmen auf der extensiv beweideten Fläche am Südosthang und zum Vergleich eine Aufnahme auf der angrenzenden Mähwiese durch.

Vegetationsaufnahme bei den HeckrindernWir gingen weiter auf einem durch zwei artenreiche Hecken gesäumten Weg bis zur reetgedeckten Beobachtungshütte. Nach der Mittagspause ging Herr Münch mit der Gruppe ins Ried hinab und erläuterte –  im Anblick zweier Storchenhorste – das ebenfalls vom BUND Markdorf betreute Storchenschutzprojekt.

Weiter führte uns der Weg bergab – vorbei an einem Weizenfeld mit vielen einzelnen Roggenähren – und dann wieder steil bergauf auf den bewaldeten Höhenrücken des Drumlin „Franzenberg“. Vom Waldrand blickten wir auf den gegenüberliegenden Gehrenberg. Mit 754 m ü. NN erhebt sich der weitgehend aus Molasse bestehende Höhenrücken ca. 300 m über das Hepbach-Leimbacher Ried. Sein höchsten Punkt liegt im Wald und bietet keine Aussicht, aber von dem etwas tiefer stehenden 30 m hohen Turm hat man einen sehr schönen Ausblick auf den Bodensee und die Alpenkette.

Weiter ging es bergab durch den Wald bis zur Kreisstraße 7742, der wir eine Zeit lang folgten. Sie durchquert das Feuchtgebiet und deswegen wurden bei ihrer Anlage Maßnahmen für den Amphibienschutz getroffen (Barriere aus Betonsteinen und einige Durchgangsröhren unter der Straße).

Bevor wir auf einen weiteren Drumlin stiegen, blickten wir auf den Ort Raderach, der auf der Kuppe eines Drumlins liegt und nachdem das ganze Gebiet von Geologen als Raderacher Drumlinfeld benannt wurde. Der neue Drumlin ist auf der Karte mit dem Namen „Heidengestäud“ eingetragen, vermutlich, weil auf seiner Kuppe der Ringwall einer Keltenburg liegt.

Vom Waldrand hatten wir einen schönen Ausblick auf das Hepbach- Leimbacher Ried und unseren Exkursionsweg. Exkursions-dramaturgisch wurde das Aussichtserlebnis durch eine vorangehende „blinde Raupe“ verstärkt. Durch einen Blick rückwärts durch die Beine kann der räumliche Eindruck einer Landschaft verstärkt werden.

Wieder bergab und dann durch Felder und Obstanlagen ging der Weg etwa 1,5 km zurück zum Ausgangspunkt.

Aufgaben

Das Hepbach-Leimbacher Ried ist das größte Niedermoorgebiet des Bodenseekreises.

  1. In den verschiedenen Bereichen der Niederung wurden Torfmächtigkeit zwischen 4 und fast 10 m gemessen. Erläutern Sie, wie man sich die nacheiszeitliche Entstehung von Niedermooren vorstellen kann und welches die Ursachen der unterschiedlichen Torfmächtigkeiten in den verschiedenen Bereichen sein könnten.
  2. Im und am Hepbach-Leimbacher Ried sorgt eine Herde Heckrinder seit 2001 für die Landschaftspflege. Charakterisieren Sie diese Rinderrasse und erklären Sie die Namensherkunft.
  3. Nutzen Sie die Ergebnisse ihrer Vegetationsaufnahmen, um die Auswirkung der extensiven Beweidung zu beschreiben und bewerten Sie dies aus der Sicht Naturschutzes. Erläutern Sie, wie sich die Flächen verändern würden, wenn man die Beweidung aufgeben würde. Nennen Sie Möglichkeiten alternativer Pflegemaßnahmen.

Pfrunger-Burgweiler Ried (1.7.2017)

(weitere Unterlagen und Infos vgl. das Exkursionsangebot von 2016 )

Treffpunkt: Naturschutzzentrum Wilhelmsdorf (wie 2016)

TreffpunktWilhelmsdorf

Thematische Schwerpunkte: Konzeption des Naturschutzzentrums Wilhelmsdorf, Landschaftsgeschichte, Insekten

Zur Erdgeschichte Oberschwabens

Man geht davon aus, dass sich die Erde vor etwa 4,6 Milliarden Jahren gebildet hat. Aber von den ersten 4 Milliarden gibt es leider nur sehr wenige Sedimente, die wichtigsten Informationsquellen über die Erdgeschichte. Erst die letzten 541 Millionen Jahre sind relativ gut durch Ablagerungen dokumentiert und in diesen Sedimenten finden sich meistens zahlreiche fossile Lebensreste. Deshalb nennt man diesen letzten Zeitabschnitt auch das Äon Phanerozoikum oder „Zeitalter des sichtbaren Lebens“. Es wird in Erdaltertum, Erdmittelalter und Erdneuzeit eingeteilt (http://www.oekosystem-erde.de/html/geologische_zeittafel.html).

Unter normalen Bedingungen liegen die höchsten Ablagerungen oben, die ältesten unten. Doch durch Abtragung der oberen Schichten, Hebungen, Senkungen und sogar Faltungen und Überlappungen ist es hier im Laufe der Erdgeschichte zu erheblichen Veränderungen gekommen. Wichtigste Ursache hierfür sind die ständigen Bewegungen der obersten festen Erdkruste, Vorgänge, die als Plattentektonik bezeichnet werden. Diese oberste Erdkruste kann man sich nämlich aus Platten zusammengesetzt vorstellen, die sich ständig gegeneinander verschieben. Sie werden sogar untereinander geschoben und dann an solchen Subduktionszonen ganz im flüssigen Erdinneren eingeschmolzen, während an anderen Stellen durch aufsteigendes Magma aus dem Erdinneren neue Krustenabschnitte entstehen. Diese Plattenbewegungen betreffen die Kontinente ebenso wie den Meeresboden, allerdings sind die Platten unter den Meeren in der Regel etwas dünner.

Man kann sich vorstellen, dass es zu Auffaltungen der Erdkruste und zur Gebirgsbildung kommt, wenn zwei Platten gegeneinander geschoben werden. Der letzte große Gebirgsbildungsprozess, bei dem auch unsere Alpen entstanden sind, begann schon im Erdmittelalter, in der Kreidezeit, erreichte aber erst in der Neuzeit, im Tertiär vor 50-30 Millionen Jahren seinen Höhepunkt. Dabei wurde die afrikanische Platte gegen die europäische Platte geschoben. Die Folge war die Auffaltung der Alpen. Aber schon während der Hebung wurden die emporgehobenen Teile durch Erosion wieder abgetragen. In den Zentralalpen sind dadurch alle Sedimentgesteine abgetragen worden, so dass das vorwiegend aus Granit bestehende Grundgebirge zu Tage tritt. In den nördlichen und südlichen Kalkalpen finden sich kalkhaltige Sedimente des Erdmittelalters, vor allem aus Trias und Kreide.

Die Alpen haben sich im Norden über die Schichten geschoben, die aus den marinen Ablagerungen von Jura und Trias stammen. Dieses Schichtenpaket wurde dadurch nach unten gedrückt und geriet in eine Schieflage. Durch rückschreitende Erosion entstand daraus die Südwestdeutsche Schichtstufenlandschaft mit markanten Abbruchkanten im Nordwesten (z. B. Albtrauf).  Die Senke am Nordrand der Alpen, die teilweise vom Meer überflutet, teilweise als Süßwassersee ausgebildet war, füllte sich im Laufe des Tertiär mit den Sedimenten aus dem Abtrag der Alpen. Diese tertiären Sedimente werden als Molasse bezeichnet, und zwar in  Folge von unten nach oben als Untere Meeresmolasse, Untere Süßwassermolasse  (mächtigste Schicht) Obere Meeresmolasse und Obere Süßwassermolasse. Grobe, durch Kalk verbundene Schotter nennt man Nagelfluh.

Geologischer Untergrund Oberschwabens (verändert nach Zier : Das Pfrunger Ried, 2.A.1997)
Geologischer Untergrund Oberschwabens (verändert nach Zier : Das Pfrunger Ried, 2.A.1997)

Mit dem Ende des Tertiär vor 2,6 Millionen Jahren begann eine Periode mit regelmäßig wiederkehrenden  starken Klimaabkühlungen (Eiszeiten), die durch etwas wärmere Zwischenzeiten unterbrochen wurden. In dieser Zeit waren die Alpen von dicken Gletschern bedeckt, die sich nach Norden teilweise bis zum heutigen Verlauf der Donau und sogar etwas darüber hinaus ausdehnten. Von den Gletschern wurde weiteres  Schotter-, Sand- und Tonmaterial aus den Alpen über der Molasse abgelagert. Dabei wurden vor allem die Täler mit Schotter aufgefüllt, der teilweise durch kalkhaltiges Wasser zu einem betonartigen Gestein verbackte (eiszeitlicher  Nagelfluh). Diese harten Nagelfluhschichten widerstanden der späteren Erosion und ließen so die Höhenrücken von Höchsten (838 m ü. N.N.) und Gehrenberg (754 m ü. N.N.) entstehen (Reliefumkehr).

Eiszeitliche Bildungen im voralpinen Vereisungsgebiet von Oberschwaben (aus Geyer, O.F./Gwinner. M.P.: Geologie von Baden-Württemberg, Stuttgart 1986)
Eiszeitliche Bildungen im voralpinen Vereisungsgebiet von Oberschwaben (aus Geyer, O.F./Gwinner. M.P.: Geologie von Baden-Württemberg, Stuttgart 1986)

Am Ende der letzten Kaltzeit, der Würm-Kaltzeit, zog sich der Rheingletscher, der seine nordwestlichste Ausdehnung bei Schaffhausen hatte, langsam nach Südosten zurück. Eine Zunge des Rheingletschers reichte etwa bis zum heutigen Ostrach, wo eine deutliche Endmöräne abgelagert worden war. Der Rückzug kam in der Höhe des heutigen Wilhelmsdorf zu einem zeitweiligen Stillstand, vielleicht gab es auch einen zweiten Eisvorstoß bis zu dieser Linie. So bildete sich dazwischen ein Eisrandsee, in den mit der Zeit viel Schottermaterial verfrachtet wurde, das heute eine bis zu 75 m mächtige Schicht unter dem Pfrunger Ried bildet. Mit dem weiteren Rückzug des Eises wurden die Sedimente feinkörniger und bildeten schließlich eine Abdichtung aus Ton. Nachdem sich der Gletscher weiter nach Süden zurückgezogen hatte, wurde von den Zuflüssen kalkhaltiges Feinmaterial in den See transportiert und führte zu, einer Sedimentschicht aus Seekreide. Darüber folgten dann vorwiegend organische Ablagerungen, zunächst feinkörnige Leber- und Torfmudde, dann zunehmend torfige Ablagerungen. Aus dem verlandeten See hat sich das Pfrunger-Burgweiler Ried gebildet, das an der Europäischen Wasserscheide liegt: Nach Norden entwässert die Ostrach zur Donau, nach Süden fließt die Rotach, die bei Friedrichshafen in den Bodensee mündet.

Autor: Thommi Gitter, entnommen aus: Markdorf, Geschichte und Gegenwart, 1990
Autor: Thommi Gitter, entnommen aus: Markdorf, Geschichte und Gegenwart, 1990

Die Panoramakarte zeigt ein Landschaftsbild, bei dem sich der Gletscher etwa auf eine Linie vom Schussenbecken bei Ravensburg bis Markdorf zurückgezogen hat. Dabei hat sich im Bereich des heutigen Hepbacher-Leimbacher Rieds ein ähnlicher Eisstausee gebildet wie zwischen den heutigen Orten Wilhelmdorf und Ostrach. Im Gegensatz zum Pfrunger-Burgweiler Ried kam es hier aber nicht zur Hochmoorbildung.

Zum Exkursionsverlauf

Exkursionsweg am 1.7.2017
(aus L8122 1:50 000)

Nach der Begrüßung gab uns Frau Ackermann, Diplombiologin und Naturpädagogin und seit 2006 Mitarbeiterin des Naturschutzzentrums Wilhelmsdorf, einen Einblick in ihre Arbeit. Sie führte uns dann in den Ausstellungsraum des Naturschutzzentrums. An einer eindrucksvollen Luftaufnahme, in der das Pfrunger-Burgweiler Ried in Nord- Süd-Richtung mit dem Bodensee und der Alpenkette im Hintergrund zu sehen ist, erhielten wir eine Einführung in die spät- und nacheiszeitliche Entstehungsgeschichte und die derzeitige Situation. Die zahlreichen Renaturierungsmaßnahmen, die schon durchgeführt wurden und die noch in Planung sind, dienen vor allem der Regeneration von Moorkomplexen (Hochmoore, Überflutungsmoore, Durchströmungsmoore,Hangquellmoore) und dem größten Bannwaldgebiet Baden-Württembergs. Nach weiteren Erläuterungen zur inhaltlichen und didaktischen Konzeption der Ausstellung wurde uns – angereichert durch optische und haptische Demonstrationen – die Geschichte der Moorentstehung vom Schmelzwassersee bis heute erläutert. Diesem Ziel dient auch die vor allem für Kinder und Jugendliche konzipierte, simulierte Fahrt mit dem „Moorkäpsele“ in den geologischen Untergrund, die wir ausprobieren durften.

Anschließend begaben wir uns auf Insektenfang. Auf der Blumenwiese (es blühten vor allem Wiesen-Pippau und Gewöhnlicher Hornklee) und am Waldrand konnten mit Insektennetzen aber auch mit der bloßen Hand bzw. mit Becherlupen viele verschiedene Exemplare gefangen werden. Zunächst ging es um die grobe Zuordnung zu Großgruppen (Ordnungen). Mithilfe von Lupe, Binokularen und weitergehenden Bestimmungsbüchern konnten auch einzelne Arten bestimmt werden, zum Beispiel Pinselkäfer, Raps-Glanzkäfer, Kleiner Kohlweißling, Dickkopffalter, Gartenhummel, Heideschrecke, Becher-Azurjungfer. Das von dem Biologiedidaktiker Ulrich Kattmann vorgeschlagenen kindgemäße Einteilungsschema der Insekten in  „Elfen“ (alle Insekten mit ausschließlich durchsichtigen Flügeln wie Zweiflügler und Hautflügler), „Gaukler“ (mit bunt beschuppten Flügeln wie Schmetterlinge), und „Ritter“ (alle Insekten mit teilweise harten Flügeln wie Käfer, Wanzen, Heuschrecken) mit dem zugehörigen Buch wurde vorgestellt.

Frau Ackermann erklärt das Konzept des Bannwalds

Nach der Mittagspause unternahmen wir – ausgehend vom Parkplatz bei Ulzhausen am westlichen Rand des Rieds – eine Wanderung zum Fünfeckweiher, in den 1920iger Jahren durch industriellen Torfabbau entstanden, und weiter bis zum Bannwaldturm, einem 32 m hohen Holzturm, der im Frühjahr 2016 eingeweiht wurde. Von seiner Plattform hat man einen sehr guten Überblick über das ganze Pfrunger-Burgweiler Ried, insbesondere über den als Bannwald ausgewiesenen „Tisch“ und den „Großen Trauben“, der den besterhaltenen Hochmoorkern des Gebietes enthält. Am Weg zum Bannwaldturm entdeckten wir den Sprossenden Bärlapp (Lycopodium annotinum), auch Schlangen-Bärlapp genannt. Diese Gefäßsporenpflanze fand früher als Zauber- und Hexenpflanze Verwendung. Wegen des hohen Ölgehaltes verwendete man die Sporen von Bärlapp-Arten früher als Blitzlichtpulver.

Auf den teilweise von Robustrindern beweideten und nicht vor 15. Juni gemähten Feuchtwiesen östlich wie westlich der bewaldeten Gebiete finden viele Wiesenvögel wie Kiebitz, Bekassine, Braunkelchen und Schwarzkelchen Lebens- und Brutmöglichkeiten. In den Bannwaldgebieten brütet ein Schwarzstorch. Den Neuntöter, den wir bei der Vorexkursion auf einem Zaunpfahl sitzend beobachten konnten, haben wir nicht wieder gesehen.

Frau Ackermann erläuterte uns die verschiedenen wasserbaulichen Maßnahmen, die nicht nur der Wiedervernässung und Renaturierung der Bachläufe dienen, sondern auch eine Gasleitung durch das Ried bis zu einem unterirdischen Depot in der Molasse unter Wilhelmsdorf sichern sollen. Von der Donau her eingewanderte Biber sorgen noch effektiver für die Wiedervernässung als die wasserbaulichen  Maßnahmen. Eine Fischtreppe und ein Wanderweg mussten durch Elektrozäune vor der Verbauung und Überflutung durch die Biber geschützt werden. Als besondere Kostbarkeit des Rieds gilt die kleine Population der Europäischen Sumpfschildkröte, die man durch gezielte Fördermaßnahmen – wie Ausbrüten und Anziehen von Jungtieren, die dann wieder ausgesetzt werden –vergrößern will.

Fünfeckweiher (1.7.201^7)

Der Weg zurück folgt dem „Riedlehrpfad“, zunächst etwa entlang der Gasleitung, und dann vorbei an einer Wiese mit Heckrindern durch das Bannwaldgebiet bis zu dem Weg, der uns schon von Ulzhausen zum Fünfeckweiher  führte. Bemerkenswert auf dem Weg nach Westen entlang der Gasleitung waren die großen Bestände von Echtem Baldrian (Valeriana officinalis). An dem feuchten Graben beobachteten wir nicht nur Breitblättrigen Rohrkolben und Sumpf-Schwertlilie sondern auch ausgedehnte Bestände des schilfähnlichen Rohr-Glanzgrases (Phalaris arundinacea), das im Gegensatz zum Schilf schwachfließende Gewässer bevorzugt. Den trockeneren Wegrand säumten Brennnesseln an denen wir die Raupen von Landkärtchen und Admiral, vorher schon vom Brennnessel-Zünsler, beobachten konnten.

Aufgaben

  1. Im Bereich des Pfrunger-Burgweiler Rieds kommen Hochmoore, Überflutungsmoore, Durchströmungsmoore und Hangquellmoore vor. Charakterisieren Sie diese verschiedenen Moortypen und beschreiben Sie die jeweilige Lage in der Riedlandschaft.
  2. Durch ganzjährige Beweidung mit Robustrindern der Rassen Heckrinder, Galloways, Schottische Hochlandrinder und Limousin-Rinder werden die feuchten Grünlandflächen in den Randbereichen des Pfrunger-Burgweiler Rieds offengehalten. Geben Sie eine kurze Beschreibung der drei letzgenannten Rinderrassen.
  3. In der Ausstellung des Naturschutzzentrums Wilhelmsdorf wird die Entstehung der Hochmoorkomplexe durch eine simulierte Fahrt in den Untergrund („Moorkäpsele“) vermittelt. Geben Sie eine didaktische Beschreibung und Bewertung dieser Vermittlungsmethode.
  4. Erstellen Sie eine Liste der von Ihnen auf der Exkursion beobachteten bzw. bestimmten Insekten (Arten bzw. Gruppen wie „Feldheuschrecke“, „Schwebfliege“ …)

Hangwald über Flappachweiher bei Ravensburg (16.7.2017)

Treffunkt: Parkplatz des Freibads Flappachweiher

Treffpunkt am Parkplatz des Strandbads Flappachweiher, 16.7.2017, 14.00h

Thematische Schwerpunkte: Kalktuffbildungen an Quellhorizonten der Jungmoräne,

http://www.wiesensteig.de/fileadmin/Dateien/Dateien/Wiesensteiger_Geopfad/Geopfad_Tafel_1-10_170709_1.pdf

Schulgeeignetes Video zur Kalktuffentstehung und Nutzung mit „Wetterfrosch“ Sven Plöger: http://www.planet-schule.de/sf/filme-online.php?film=10465

Zum Exkursionsverlauf

Die letzte Exkursion des Sommersemesters führte uns wieder an den Rand des Schussenbeckens, dieses Mal in die östliche Seitenmoräne, in die sich der Flappach, der bei Ravensburg in die Schussen mündet, tief eingegraben hat. An einem aufgestauten Weiher des Baches liegt eine große Badeanstalt („Flappachbad“). Wenn man beim Ort Knollengraben von der B 32 dem Wegzeiger „Flappachbad“ folgend abbiegt, fährt man zunächst durch den Ort Ittenbeuren. Die vielen Teiche, die man hier sehen kann, dienten früher der Flachsrösterei.

Treffpunkt war der Parkplatz des Schwimmbades. Unser Weg querte zunächst den Flappach und führte dann der Badeanstalt entlang und weiter in den bewaldeten Hang der Jungmoräne. Wir beschäftigen uns zunächst mit der Windepflanze Zaun-Winde (Calystegia sepium) an einem Bestand der Kanadischen Goldrute (Solidago canadensis). Auf den ersten Blick könnte man meinen, die großen weißen Windenblüten würden zu dieser Pflanze gehören. Aber bei genauerem Hinschauen sieht man, dass die dünnen Sprossachsen der Winde die Goldruten-Stängel umwinden und zwar in Wachstumsrichtung gesehen immer links windend.

Z-Winder (Linkswinder) Zaunwinde (Calystegia sepium)
S-Winder (Rechtswinder) Hopfen (Humulus lupulus)

Die Zaun-Winde als Vorbild nehmend schmuggelten nun drei Arbeitsgruppe jeweils 4 – 5 Objekte in ein etwa 3 m breites Stück der wegbegleitenden Vegetation ein (ein falsches Blatt, eine nicht passende Blüte oder Frucht …). Die anderen beiden Gruppen suchten dann jeweils gemeinsam nach den eingeschmuggelten Gegenständen.

Die Jungmoräne ist hier aus sehr unterschiedlichen Materialien aufgebaut. Insbesondere sind immer wieder wasserundurchlässig Mergelschichten eingeschoben, die dazu führen, dass sich Quellhorizonte ausbilden. Das an verschiedenen Stellen an kleinen Quellen und Sickerstellen austretende Wasser sammelt sich zu einem dem Weg folgenden Bachlauf. Immer wieder konnte man an Quellstellen und am Bachlauf frischgrüne, mehr oder weniger ausgedehnte Moospolster erkennen. Bei dem Moos handelt es sich um das Wandelbare Starknervenmoos (Palustriella commutata). Als wir die Moospolster an einigen Stellen abgehoben, konnte man erkennen, dass sie unten hart verkrustet waren und teilweise auf gesteinsartigen Brocken aufsaßen. Die Kosten an den unteren Moosteilen und das Gestein schwanken bei Behandlung mit Essigessenz, was auf ihre chemische Zusammensetzung – Calciumskarbonat (Kalk) – hindeutet. Wir versuchten im folgenden, uns die biogene Bildung von Kalktuff spielerisch verständlich zu machen.

Für den weiteren Exkursionsweg wurden folgende Sammel-Aufgaben verteilt:

  • Sammle mindestens fünf kräftig riechende Pflanzenarten
  • Sammle mindestens fünf Beispiele für Pflanzenteile, die sich sehr weich anfühlen
  • Sammle mindestens fünf Beispiele für Pflanzenteile mit Tierspuren
  • Sammle mindestens fünf verschiedene blühende Pflanzen
  • Sammle mindestens fünf Früchte oder andere Pflanzenteile, die „kletten“

Unterwegs wurden einige Pflanzen besonders in den Blick genommen:

  • Riesen-Schachtelhalm (Equisetum telmateia, typisch für Quellstellen, basenreiche Untergrund, R 8)
  • Adlerfarn (Pteridium aquilinum, größte einheimische Farn-Art, typisch für mageren sandigen Boden R 3, Kosmopolit)
  • Großes Hexenkraut (Circaea lutetiana, rhizombildende Schattenpflanze)
  • Wald-Bingelkraut (Mercurialis biennis, rhizombildende Schatten die ausgedehnte „Herden“ auf dem Waldboden bildet; an der windblütigen, zweihäusigen Pflanze entdeckte Johann Jakob Camerarius 1694 die Sexualität der Pflanzen)
  • Echtes Johanniskraut (Hypericum perforatum, an einer stärker besonnten Wegrandstelle, der „Blutstropfen“ den man aus den noch nicht geöffneten Blütenknospen pressen kann, enthält v. a. pupurfarbenes Hypericin und verwandte Antrachinonderivate, sie wirken antidepressiv und sedativ aber auch photosensibilisierend)
  • Winter-Schachtelhalm (Equisetum hyemale, wintergrüner, unverzweigter Schachtelhalm, dank seiner Siliziumdioxid-haltigen Warzen der Epidermiszellwand früher als Griffelspitzer und heute noch als Schleifwerkzeug für Klarinetten- und Saxophon-Blättchen verwendet)
Wald-Engelwurz (Angelica sylvestris)
  • Wald-Engelwurz (Angelica sylvetris, Doldenblütler mit sehr großen, dreifach gefiederten Blättern, medizinisch vor allem als schleimlösendes Mittel gegen Bronchitis eingesetzt)
  • Wir beobachteten in einer sehr schattigen Talniederung große Bestände des Winter-Schachtelhalms (R 7). Auf höheren Stellen des durch Hangrutschungen sehr ungleichmäßigen Reliefs wurden aber unmittelbar neben den Schachtelhalmen auch Heidelbeersträucher (R 2) gefunden.

    Schattige Talniederung mit Winter-Schachtelhalm (Equisetum hyemale)-Detailansicht rechts unten

    Über einen immer steiler werdenden Weg (vielen Dank für den Anschub!) erreichten wir schließlich die Kreisstraße von Oberhofen nach Grünkraut (K7982), von der wir – nach Besprechung der Sammelaufgaben – links in die K7985 zum Weiler Menisreute abbogen. Von dort ging es auf steilem Pfad geradewegs zurück an den Flappachweiher – ich bedanke mich hiermit noch einmal für die Bike-Bremser, die mich vor einer rasanten Gleitfahrt bewahrten!

    Aufgabe zum 13.7.2017

    Skizzieren Sie einen didaktisch begründeten Plan zum möglichen Exkursionsablauf durch den Hangwald am Flappachweiher.

    Aufgaben zum 16.7.2017

    1. Nennen Sie einige Beispiele für windende Pflanzen und erläutern Sie den Unterschied zwischen S-Winder und Z-Winder. Kommen die beiden Typen unterschiedlich häufig vor? Geben Sie eine biologische Erklärung zur Lebensform „Winden-Pflanzen“.
    Schema zur biogenen Kalktffbildung im Flappachtal (W.Probst)
  • Nutzen Sie die Abbildung zur Erklärung der Kalktuffbildung. Gehen Sie dabei besonders auf die Bedeutung von Moosen, Algen und Blaugrünen Bakterien ein (biogene Kalktuffbildung).
  • Im Hangwald oberhalb des Flappachweihers kommen dicht nebeneinander Pflanzenarten mit recht unterschiedlichen Zeigerwerten für Bodenreaktion und Nitratgehalt vor. Nennen Sie einige Beispielarten und erklären Sie den kleinräumigen Wechsel der Standortbedingungen.